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PREFA CE

The work to bg described herein constitutes the final report on

NASA Contract NAS7-71Z entitled: "Unsymmetrical Large Deflections

of Expulsion Devices." The purpose of this effort was to 1) providea

qualitative assessment of various bladder-type propellant expulsion

devices of current design and Z) to indicate the proper course for future

studies leading to an improvement of the fatigue life and efficiency of

such devices.

The text of this report is divided into four chapters. The basic

problem definition, evaluation of current solution methods, conclusions

and recommendations are included in Chapter I which is primarily

descriptive. Detailed analytical calculation, deemed inecessary to

support many of the statements in Chapter I, are included in Chapter I/

through IV.

As a program-management aid, a flow chart describing the major

research phases considered under the present contract, as well as

recommended future research, is included as Fig. P.1.

._" :..'.
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CHA PTER I

<]ENERAL DISCUSSION AND RECOMMENDATIONS

l.l Discussion of the State,of-the-Art

The problem of designing a bladder expulsion device

may be stated as follows: to maximize the "efficiency" of the

device subject to such constraints as a required fatigue or

cycle life, chemical inertness to the propellant, per2neability

of the bladder to the propellant and pressurant, storability

under service conditions, and stability under flight and launch

environments. The present study focuses attention on the

structural aspects of this design problem, namely the fatigue

or cycle life of bladder expulsion devices.

An accurate assessment of the cycle life of a bladder

depends, in turn, upon the accuracy of the calculated strains

and stresses of the bladder at each material point. The pre-

diction of the topology of a collapsing bladder, however, con-

stitutes one of the most difficult problems in Applied Mechanics.

Therefore, let us review briefly,_'hat can be expected in terms

of a dependable analysis of bladder deformation.

l.l.l Analysis of Single Folds

The analysis of single folds is certainly within the pre-

sentstate-of-the-art. Both analytical and numerical approaches

are applicable to certain classes of problems. In this connection

the results obtained by Rocketdyne [i] are representative of the
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strains and stresses due to an initial single folding. For a

complete analysis of a single fold, one must consider:

a) folding, b) unfolding, c) pure hi-axial extension, and finally

d) refolding. Analytical study of such a defo.rmation-cycle

is certainly possible and should be undertaken. Such a study

must include the strain harde_ phenomenon for metallic

bladders. The analysis presented by Rocketdyne [I], while

re.levant and useful, involves only the initial folding part of

the complete deformation-cycle mentioned above.

To be of practical relevance, such a theoreticalstudy

shoald be accompanied by appropriate experiments on fiat

sheets, consisting of the proposed bladder materials, s'ubject

to the above mentioned deformation-cycles.

I.l.Z Double Folds and Pointing

It appears that all bladder deformations can be clas-

sified into a) single t'olds, b) multi-legged _¢ folds without pointing,

c) tahiti-legged, folds with pointing (this will be referred to as

"pointing"), and d) double folds. While, in a collapsing bladder,

This refers to the case of two or more single folds inter-
.sect_ng at a point.
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the fir.,ttwo types of folds occur by necessity, the occurrence

oi"the last two types should be minimized by a judicious design.

The analysis of the double fold and/or pointing represents

a problem of enormous proportions. The complications arise

from a number of sources. First, since plastic deformations

generally accompany pointing and double folding in metallic

bladders, the strains in the material at any instant are functions

of the previous strain history as well as the given load. Second,

the topology of a nonsymrnetrically collapsing bladder depends,

tO a large extent, on small irregularities in the initial (unloaded)

geometry of the bladder. Since such irregularities are random

in character--especially after the first cycle of deformation has

taken place--the position or history of a given point or double

fold may, for all practical purposes, be indeterminable. Third,

double folding is usually accompanied by an instability or dramatic

wrinkling of the inner surface of the fold, the x esult of which is

an effective inner radius which may be of a much smaller order

than the thickness of the bladder. In this respect the problem

is a'three-dimensional one, i.e., conventional shell theory is

no_._tappl_cable to regions in the vicinity of the fold. The magni-

tude of the problem can be better appreciated by recalling that the

buckling and post buckling behavior of such a seemingly simple

....... o-:-- " : _ .... -" _ "-_t _ ....... ..,/.-; : ..... .: L.?::. : "::L- .... : • "-:':" :'- :" ..- :-_ -- " _-- .: . _';":'--:' _ ' ' .... _; -/ "- -" " _"---:-;':_"--'-"_ :-_=-'_;--J



geometry as a circular cylindrical shell dates back to Fairl: ,s'nes

(1850), yet today the post buckling behavior of a cylinder c_.nnot

be adequately predicted [Z 3.

In view of the foregoing difficulties, _t should be absolutely

clear that any expectation of a rigorous analysis of the nonsymmetric

deformation of a collapsing blaJder, with pointing and/or double

folds, by either analytical or numerical means is entirely unrealistic.

In passing, it sh,,uld be noted tha r the isometric mappings

of the ASTRO Research Corporation [3] and Rocketdyne [13 appear

quite useless in terms of both qualitative and quantitative information,

since the equations governing isometric mappings of most bladder

geometries are nonlineer and do not admit uniq_e solutions! Moreover,

the double fold analysis presented in [1] is not reliable in view of the

many ad-hoc assumptions and approximations upon which it is based,

and also the dubious fatigue data that is employed.

Finally, since a rigorous analysis of double folds does not

appear to be within the state-of-the-art, recourse must be made to

experimental investigations of this phenomena. There are relatively

easy and inexpensive tests which may be superior and more informative

than ad-hoc theories. One such test may be described as follows: a

flat sheet of the proposed bladder material (e,g., laminated polymer-

metal composite) is subjected to a) a s_ngle fold, b) a double fold,

c.) unfolding, and d) hi-axial extension. The folding process and the



radii of the folds may be controlled by the use of rigid cylinders

upon which sheet_ of each specimen are folded. The objective of

such tests would bc a design which involves minimum plastic de-

formation due to folding of the metallic part of the composite.

. -, -..- ___-_.._ _ _ _'-j



I. Z Des____ig__nl:'hilosophy

The topology ofa collapsiDg bladder is such that, even

under seemingly idealistic conditions of geometry and environ-

ment, one cannot, in general, obtain a design which is completely

void of double folds and/or pointing. One must therefore accept

the consequences of their occurrence. In view of the inability

to accurately predict stresses and strains at double folds, how-

ever, it is clear that one should design to minimize their occur-

r.ence and/or their undesirable effects. In the subsequent sections,

the latter point is discussed with respect to the selection of bladder

materials and geometry.
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1.3 Classification of Expulsign Devices According to Materials

1.3.I Homogeneous M_terials

1.3.1.1 Metals: In view of the permeability problem, it

is natural to select metals as bladder materials. The consequence

of double folds and/or pointing, however, are extremely _erious

with respect to all metals, due to the large strains experienced

and the extremely low fatigue life of metals under such large

strains. Further, the occurrence of double folds and/or pointing

is maxixnized with respect to a homogeneous metal. The use of

a homogeneous metallic bladder is therefore no_._trecommended.

1.3.1.2 Non-metals: Some non-metals may be ideal

with respect to fatigue life under the large strains induced by

folding or pointing• As examples we note Teflon and Kel-F.

The Teflon produced by E. I. du Pont de Nemours & Company

(tetrafluro ethylene) has a tensile strength up to 3,500 psi, elong-

ation of 250 to 350%, melting point 594°F, and is highly chemical-

rzsistant. Kel-F, of the Minnesota Mining 0.rid Mantffacturing

Company (trifluorochloro ethylene), has a tensile strength of 5,000

psi, and is also highly chemical-resistant. Some rubbers, on the

other hand, may be applicable. For example, fluorocarbon rubber

- ._ - ....... ..... ---:--:_.:-'-. .... K . ;;:-2.: L .
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(tt_is is a saturated fluorocarbon polymer containing 50% fluorine

and is produced by the Minnesota Mining and Manufactt_ring Company)

has a tensile strength of 3,000 psi, elongation of 600"/u, is heat re-

sistant to 400°F, and is highly chemical resistant. Unfortunately,

permeability can be a problem with respect to homogeneous non-

metals. In this connection homogeneous materials do not appear

suitable unless the permeability of such polymers as Teflon can be

either tolerated or improved. Also, it should be noted that the mech-

anical properties of many non-metals are highly temperature-dependent.

1.3.2 Composite Materials

Composite materials consisting of suitable metals and

polymers or elastomers appear to "offer a possible solution to

the bladder material problem. Assuming the manufacturing pro-

cesses can be worked out, one particular promising candidate

consists of two layers of a polymer or elastomer bonded to a

very thin inner layer of metal. Here the metallic layer lies on

the neutral axis of the composite, thus minimizing the strains due

to folding or pointing deformations. The metallic inner layer

serves a dual purpose: first, it reduces permeability, and second,

it aclds effective tensile strength to the bladder in resisting pure

membrane-type stress. The non-metal, on the other hand, absorbs

the large strains off the neutral axis. It should be noted that, in

I0



a composite, a non-metal portion of sufficient thicknesses and

flexibility should I) reduce the occurrence of double folds, and

Z) reduce the magnitude of the maximum curvatures experienced

at double folds. The latter leads to a reduced strain in the metal

and hence to a longer fatigue life of the bladder.

One composite which can be manufactured consists of a

lamina.ted structure (in the following sequence) of _ I x I0 "z in.

TFE (tetra fluro ethylene), _.5 - I x I0 "2 "_n. FEP (fluorinated

ethylene-propylene), _ 1 - 2 x 10 -3 aluminum foil, and

i x I0 "2 in. FEP. An optimum design would be to add another layer

of TFE into the FEP, however, in view of the necessary curing se-

quence and the degradation of FEP at the temperatures required to

process TFE, this may prove to be a formidable manufacturing

task. Means of constructing "optimal" composites should be seri-

o__slyexplore__d.

An important additional feature of the foregoing composite

should be carefully noted. Followin_ a single fold, a sandwich-type

structure develops that has a very high bending resistance in com-

parison with that of the unfolded portion of the bladder and thus is

partially "double fold-proof." For example, consider a composite

consisting of two layers of polymer, each of thickness h and

modulus E' , bonded to a central layer of metal of thickness t and

l!
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7

elastic modulus E . If one assumes that t/h is small (e.g.,

t/h _ I0"I ), the bending stiffness per unit length of a sheet of

this composite is approximately equal to

2 , h 3
E'I 1 --_ E

(Poisson's effect is neglected). On the other hand, the bending

stiffness per unit length of the same composite, now once folded,

is approximately equal to

, z ,h 3 (3E)(_)] .

• ... .

Hence, the ratio of the bending stiffnesses of a singly folded

and an unfolded sheet is

E'Iz .E).t
- - 8 + 3 .

E'I 1

For typical composites, it can be expected that the second term

on the right-hand side of the above relation will be of the same

order as, or much greater than the first term.

I.3.3 Rib or Ring StLffenners

Partial deformaticn control can be achieved with rib- or

ring-type stfffenners. For example, as has been found in previous

JPL tests, nearly axisymrr.etric deformation of spherical-type

IZ



bladders can be attained over a limited range of deflections by' a

proper choice o£ reinforcing rings (further remarks will be made

regard£ng this example in Section I.4. l.l). It should be noted, how-

ever, that whereas a suitable rib-rein£orcement may minimize the

occurrence of double folds and pointing, it will not appreciably

affect the stress-state at a double fold. Folding and pointing are

local phenomena, i.e., they may occur between the reinforcing

ribs. Hence, a design which is based solely upon rib-reir_orce°

ment for completely preventing folding and pointing may not be

reliable. It appears that the optimum bladder material, both

£rom the structural and permeability points of view, may be a

rib-reinforced composite of metal and polymeror elastomer.

13

.... -.--._ ..... .... " _ ._:--.--- - ........ --_.-r- , ,



J,L :

1.4 Classification of Expalsi.on Devices Accor. di.!sng to Expalsio_n Mode

and Geometry

Expulsion modes may be classified as force-controlled,

dlsplacement-controlled, and a combination of force and dis-

placement-controlled. The advantages and the disadvantages of

the first two classes are briefly discussed below.

1.4.1 F0rce-Controlled Expulsion Bladders

Here the deformation is governed by the material com-

position, geometry, and a judicious use of rib-reinforcements.

A common device of this type is the hemispherical bladder.

Since much attention has been devoted to this geometry in the

past (e.g., the Rocketdyne report [I] and numerous JPL

laboratory tests), let us consider this example in more detail.

The Spherical Bladder--What's Wrong With it.

How can St be Improved? As an illustration, let us consider

the gold-reinforced spherical bladder shown in Figs.1.1. Figure 1. la

shows that the collapse pattern of such a device, within

limits, be constrained to an axisymmetric state. Hence, up to

the instant that the Fig. 1.1a photograph was taken, double folds

and points were largely non-existent. Notice also that the in-

verted part of the shell (Fig. 1. la)constitutes a shallow spherical

cap. In Fig. l. lb the deformation has progressed somewhat further.

14
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Small but definite asymmetric deformations can now be observed

around the ridge of the inverted part of the structure. Notice

that the undeformed section cf ehe shell now resembles a cylinder

whose characteristic buckled pattern (with or without reinforcing

ribs) is diamond-like, involving considerable pointing. This

pattern is seen to develop in Figs•l.lc, d. Figures 1.1e, f illustrate

the remaining portion of the collapse-cycle. Figure 1.1g shows

the beginning of the inflation-cycle. Notice now the very irregular

geometry, i.e., the many large and small imperfections. Figurel. lh

indicates that folding and pointing are numerous at the beginning

of the second cycle due to the imperfections. Figures 1.1i_k show

the collapsing part of the second cycle. - --!: :.

What's wrong with this design? In terms of the geometry,

the flaw in the design may be explained as follows: even. wi_da rib-

reinforcements: one may expect axisymmetric deformations only

as long as the undeformed portion of the shell is reasonably shallow•

In other words, had the shall been cut and supported along the ridge

shown in Fig.1. Ib, the test quite probably would have been a success,

at least for the first few cycles• A proper design, however, would

be a spherical cap of optimum depth, or a modified spherical cap as

illustrated in Fig.1. Z, consisting of a rib-reinforced composite of

metal and polymer or elastomer. The selection of the optimum geo-

- merry, depth of the shell, spacing of the rib-reinforcements, and

15



finally the composite material and design constitutes a problem

which should be carefully studied. The type of composite that

one should use clearly depends on the geometry as well as the

expulsion-mode of.the bladder. For example ifa hemispherical

bladder is to be completely inverted, litg!eadvantage is gained

by employing a composite that consists of a layer o£ metal placed

on one side of a layer of polymer or elastomer; clearly enough,

the composite should not •consist of two metal layers placed one

on each side of a polymer layer. In this example, a metal layer

placed at the neutral axis, i.e., between _vo layers of polymers,

appears to be a suitable design, although it may present a formi-

dable manufacturing task. Hence, itappears that, with a judicious

choice of the bladder geometry, composite material, and rib-

reinforcements, a "highly" double-fold-resistant" bladder may very

well be a realistic design objective.

1.4.%. Displacement-Controlled Expulsion Bladder

Current thinking, in this connection centers around a

displacement-controlled device which utilizes the concept of a

piston-type collapsing process which may be employed in con-

junction witha rib-reinforced torus, or rib-reinforced deep

spherical cap. The basic idea may be described in connection

with the latter geometry (spherical cap) as follows: The spheri-

16



cal cap is collapsed by' means of a relatively rigid indentor of

a suitable profile (for example, parabolic). The deformation

begins at the apex of the shell, where the indentor first comes in

contact with the bladder, Fig. 'I.'3. Subject to a distributed com-

pressive force applied at the vicinity of the shell's apex, only

a local buckling, in the form of a symmetric dimple, initiates

at the apexand progresses to the other parts of the shell. By

a suitable spacing of rib-reinforcements, and judicious choice

.of composite material, one may affect a deformation-controlled

device which may quite possibly be void of double folds. In this

case, the composite material mentioned at the end of Section I. 4i'I

may prove to be a good design. However, the usefulness of any

device of this kind should be established experimentally.

A basic disadvantage of these kinds of expulsion devices is

the additional weight that is required for the supporting equipment.

P
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1.5 A_Promising Design - .Analytical - Cons___.._iderations

It is evident that an optimal bladder design is one for which

1) the bladder geometry is selected to minimize the occurrence of double

folding or pointing and 21 the material is selected to minimize the

adverse effects of double folding or pointing should they occur. Regarding

item 11, an important question is the following: can a_ axisymmetric

bladder or diaphram (shell of revolution) be designed such that, under

effective.external pressure, it undergoes only axisymmetric defo_'mation.

By definition, such a mode of deformation would be void if double folds

an_ pointing. It is clear that a device of this type must be rib-reinforced,

and further that the ribs must be rings having the axis of symmetry of the

shell as their common axis.

The proper design of the above mentioned bladder necessitates a

numericaI code designed to _olve the _ol]ow_.ng i_roblem: predict 11 a

shape of the meridional midsur_ace of the s1_e!l, 3) a spacirg and

stiffness distribution of the rings, 3) a shell thickness aistribution and

41 the material properties (structrral) of the composite comprising the

shell, such that the shell would deform symmetricalIy and sequenriaJly

from ring to ring. In'addition, once l) through 4) have been accomplished,

the numerical code must be capable of 5) predicting the strain history of

the subsequent single folds with sufficient accuracy that an assessment

of fatigue or cycle life could be made.

18
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The construction of a numerical code to provide the information

disc-.o_ed above is indeed a difficult task, and the following questions

immediately arise: I) is the construction of such a code within the present

state-of-_ne-art? ; 2) if yes, what analytical and numerical procedures

shoula b _ followed? In an effort to provide sound judgements concerning

the ans ver to questions I), 2) above, it was found necessary to embark

upon an exploratory analytical/numerical research program which was,

however, outside the original scope of the present task. This research

included 1) the analysis of nonlinear axisymmetric deformation of shells

of. revolution, and the stability of this state with respect to nonaxisymme-

tric perturbation; Z) the analysis of single folds incomposite polymer-

metallic sandwich-type materials; and 3) the derivation of differential

equations for rib-reinforcements. The details of there investigations

can be found in chapters II, III, and IV. Below we present our findings

within the context of the posed problem.

1.5.1 General Analytical Sequence

A seemingly tractable analytical sequence for the construction of

the above code is as follows:

(1) A suitable nonlinear shell theory is first selected to represent

the bladder in the unbuckled (symmetric) state and states adjacent to this.

External pressure is applied and the axisymmetric deformation of the

baldder is obtained.

19
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(2) The foregoing axisyrnmetric deformation is now given a general

axisy'mmetric and non-axisymmetric perturbation and the equations

governing these perturbations are derived from the original nonlinear

shell equations. The static stability of the perturbation equations are

then investigated.

Let the rings be numbered sequentially from the apex of the shell

to the base. Let that section of the shell between the apex and the first

ring be denoted as #1, that between the first and second rings as #Z, etc.

Then, according to the results of the eigen-value problem stated in item

(1)' above, one of the following events may take place: a) no buckling

(symmetric or antisymmetric), b) global or local antisymmetric bifurca-

tion, c) symmetric snap of a section other than #1, d) symmetric snap of

section #1 only. If a) occurs, the load is increased until one of a)

through c) occur. If b) occurs, the rings must be stiffened and/or closed

up until no antisymmetric deformation takes place. If c) occurs a more

rapid increase in ring-stiffness from section #1 up must be tried. Finally,

by trial and error (preferably employing computer graphics), adjustments

are made until section #1 buckles (snaps) first in an axisymmetric mode.

(3) Once section #1 snaps symmetrically, the result_.ng shell can be

treated as a new shell. This new shell can be envisioned as a shell with

a hole in place of section #1. The forces and moments at the edge of the

hole then represent the action of section #1 (the snapped portion of the

shell) upon the remaining part of the shell. These resultant forces and

2O
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moments must be calculated as a part of the problem.

(4) Single-fold strains due to axisymmetric snap-thru, and the

corresponding resultant forces and moments are calculated.

(5) The prebuckled axisymmetric stresses and deformatioa of the

new shelI are now determined. This state is perturbed, and the stability

of the perturbation equations are investigated. Again, the associated

eigen-value problem will determine the buckling mode of the shell. The

remaining ribs are adjusted until the #Z section snaps symmetrically at

a load higher than that associated with the buckling of the #1 section, but

lower than that required for either antisymmetric buckling or the

axisymmetric snapping of any other section.

(6) The above process is repeated for the remaining sections of the

shell.

(7) Single fold strains (due to axisymmetric snap- thru) are now

determined and correlated with cycle life.
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I. 5.2 Numerical Details

Let us now discuss the details of constructing a numerical code

to accomplish the objectives listed above. This task can be divided into

the following basic areas: a) mathematical description of the bladder,

b) numerical analysis of the axisymmetric state, c) stability analysis of

the axisymmetric state, and d) detailed analysis of the strain due to

single folds.

Item a) can be adequately accomplished in several ways. One

method can be described as follows: Every axisymmetric bladder will

co'nsist of a shallow region near the apex, and a deep-shell region adjacent

to this. That portion of the bladder in the vicinity of the apex can be

represented by a nonlinear shallow-shell theory (e. g., Marguerer's

equation). In the remaining part of the shell conical segments between

ribs should serve as an adequate approximate "model. The bel_avior of

the shell in these two regions will, of course, be markedly different. In

the shallow zone bending effects will be dist_-ibuted throughout the entire

domain; on the other hand, in the deep zone bending will be confined to

edge or boundary layers adjacent to ribs. This suggests, therefore, a

boundary layer analysis whereby that portion of the shell immediately

adjacent to a rib is described by an appropriate single fold analysis, and

that portion outside by a membrane theory, with proper matching of the

two solutions.

Consider now items b) and c). Based upon the discussion under

a) above, this task may be decomposed into an analysis of rib-reinforced

shalloW shell of revolution, an analysis of the boundary or single fold
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region, and a determination of the membrane state in the deep-sheU

region with a matching to the edge layer. The first two items ha, e been

rather extensively investigated in the course of this study in order to

determine whether or not they are within the current state-of-the-art.

Based upon a study of rib-reinforced shallow spherical caps, the

details of which can be found in chapters II and IV, the response and

stability of the shallow zone of a bladder can, it would appear, be ade-

quately treated by the finite-difference method of N. C.. Huang [4 ].

Here many meshpoints can be employed for accuracy, _ret a relatively

small computer core is necessary: A detailed program description

covering the rib-reinforced shallow spherical cap can be found on

page 46. Regarding the stability portion of this program, it would

appear the technique could be extended to cover the entire bladder, once

pre-bud<led bladder deformation is known.

in contrast to the shallow-shell analysis, a finite-difference approach

to the single-fold problem was found in Chapter III. to require a very

large computer core. A description of this study and a recommended course

of action will now be presented•

For a composite consisting of a thin layer of metal placed between

two layers of elastomer, and undergoing folding, a good estimate of the

state of stress is obtained if we use the following procedures: a) find the

".

stress fields in the inner and outer layers of elastomer using large

deformation theory of elasticity and treating the thin layer of metal as an

23

........... : _--_. .T-_-_c _ _
i, , .... m_ i i i " i i"



inextensible central sheet; b) under the bond stresses transmitted to the

middle metal sheet by the elastomer, and using a plasticity theory,

find the stress and strain fields in the metal layer. The assumption that

the middle metal layer, in comparison with'the elastomer, is inextensible

can be justified on the grounds that the strains in the elastomer is by far

larger than those in the metal, even when the metal undergoes plastic

deformations. Moreover, such an assumption would yie.lda more

conservative estimate of the stress-state in the elastomer as well as the

bond stresses between the elastomer and metal, and hence is in the safe

side. Sir_ce under a repeated loading of the type encountered in expulsion

bladders, either the bond between metal and elastomer may be broken or

the metal layer may fail under a cyclic plastic deformations, the analysis

provides information for design against such failures.

In a single-fold, the state of deformation is plane with finite rotations

as well as strains. Thus a plane-strain formulation for large rotations

and strains is required. This is done in Chapter III. Because of the non-

linear character of the field equations, however, their integration can be

affected only numerically, using a step-by-step incremental loading. At a

given step, on the other hand, one may employ: a) a finite difference scheme

or b) a variational approach together with a finite-element scheme. In

Chapter III, a) is fully developed, and b) is briefly discussed. Here we

point out that while there exists a number of finite-element methods for

solution of structural problems at large deflections (see Marcal C5 _ for a

literature survey), these methods are no___tapplicable to the bladder problem
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which involves deformations with large strains of non-metalic materials. _

A complete formulation of plane-strain problems for general elastic

materials which possess a strain-energy function, and which are isotropic

in their undeformed (virgin) state is presented in Chapter III. For an

incremental solution, the results are developed for small deformations

superimposed on initially large deformations. A lagrangian formulation

is used, and the field quantities are expressed in terms of the particle

positions in the initial undeformed configuration. However, explicit

expressions and transformation-equations are given for describing these

field quantities in terms of the particle positions in the deformed state,

i.e., Eulerian formulation. The resulting system of linear, partial

differential equations and the corresponding boundary conditions are then

expressed in a finite-difference form, using a central difference scheme
. .

and incorporating the corresponding difference-corrections. The correc-

tion terms are given explicitly, and may then be included by means of the

matrix multiplications, yielding very accurate results.

While the finite-difference method developed in Chapter III may be

used effectively to obtain the states of stress and strain in the elastomer

part of the composite, the incorporation of various mixed boundary

conditions may involve some difficulties. In this regard a correct and

Consistent finite-element approaching may prove more useful and more / '

effective, Such a method must be based on a minimum principle, and _/

For example, the latest and most advanced finite-element formulation by

Felippa[6], that considers large deflections, ignores terms of the same
order of magnitude as those included, and uses a constitutive law which,
at best, can be applied to metals in the elastic range and at infinitesimal
strains, see Chapter iIifor further discussion.
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must include an assessment of stability and uniqueness of the solution

at each increr_nent of loading. These are briefly discussed in Section 5

of Chapter Ill where a complete and correct minimum principle is stated

and the question of stability is discussed. This principle permits a

correct formulation of a finite-element scheme for the incremental solu-

tion of folding which involves finite rota'cions and strains of elastomers

with various constitutive relations. These formulations are not presented

in this report, since it would have taken us far beyond the scope of the

work. However, it is strongly recommended that such a study be further

pursued.

To complete the study of single-folding of a metal-elastomer

composite, an estimate of the plastic deformations of the metal sheet is

also needed. While it is desirable to have a program which provides the

stress and strain fields in both elastomer and metal layers simultaneously,

in this study we have been contented with a conservative engineering

estimate of plastic strains in the metal sheet. This is done by using the

known state of stress in the elastomer, and assuming a linear variation

of the stress-components across the thickness of the metal sheet. The

corresponding plastic strain-increments are then given using Mises' yield

condition.
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I. 6 Sumn,ary and Recommendations

I) It appears that bladder deformation can be classified as

a) single folds, b) multi-legged folds without pointing, e) multi-legged

folds with pointing, and d) double folds.

Z) The analysis of single folds is within the present state-of-the-

art and should be carried out in connection with the following deformation

cycle: a) folding, b) unfolding, c) pure bi-axial extension and finally,

d) re-folding.

3) The analysis of double folds and pointing appears no____tto be

within the present state-of-the-art. Hence, experimental investigations•

of double folds should be undertaken. Early tests need not be conducted

on complete bladders. In the interests of economy one may employ flat

sheets of the proposed bladder material. These experiments should

include the following deformation cycle: a) single folding, b) double

folding, c) unfolding, and d) bi-axial extension.

4) The objective of the analyses and experiments mentioned

above is a design which minimizes the undesirable effects of double

fDlds and pointing.

5) The use of a homogeneous metallic bladder is no____trecommended

because of the low fatig,:e life of metals under large strains.

6) The use of hon_ogeneous non-metal bladders is no____trecommended

because of their excessive permeability.

7) An optimum bladder material appears to be a layer of metal

sandwiched between t_vo layers of non-metal (polymer or elastomer).
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8) The optimum bladder gecmetry appears to be a rib-reinforced

shell of revolution.

9) The proper design of the bladde_ necessitates a numerical

code which is capable of predicting: a) a shape of the meridianal

midsurface of the shell, b) a spacing and stiffness distribution of the

rings, c) a shell thickness distribution, and d) the material properties

(structural) of the composite comprising the shell, such that the shell

would deform symmetrically and sequentially from ring to ring. In

addition, once a) through c) have been accomplished, the code must

be capable of: d) predicting the strain history of the subsequent single

folds with sufficient accuracy that an assessment of fatigue or cycle

life could be made.

i0) The construction of such a numerical code is within the

present state-of-the-art.

11) It has been found that the conventional finite difference method

for the solution of the single fold problem, while tractable, may not

constitute the most efficient solution-technique. Further research

(outside the present contract) has conclusively shown that the problem

can be more advantageously approached by a finite-element scheme

which utilizes the concept of small deformation superimposed upon large,

and employs in each incremental loading an absolute minimum principle.
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12) While a flnite-differencc scheme is both tractable and

efficient for the stability portion of the foregoing code, it appears that

a more u_iform and flexible method would .be to formulate the shell

stability a,nalysis in finite element form as well.
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CHAPTER II

BLADDER DEFORMATION AND STABILITY

2.1 Introduction

As was noted in Chapter I, our basic design philosophy

is to eliminate (or at least minimize) double folding and pointing

through deformation control• For bladders that are shells of

revolution, one promising method of obtaining deformation control
.

is by a judicious choice of ring reinforcements (ribs)• The most

elementary problem of this type canbe posed as follows: given

a bladder (geometry and material properties), find a distribution

of ring stiffness and spacing (along the shell meridian) that

constrains the deformation field to be axisymmetric and sequential

(ring to ring from vertex to bottom) under external pressure

(expulsion), and similarly during re-cycle. A much more ambitious

problem might be posed as follows: for a given fatique (cycle)

life, and external and expulsion vol_es, find shell and ring

geometries and material properties, and ring spacing, such that

a) the deformation is axisymmetric and b) the weight of the

structure is minimized.

A necessary first step in the solution of design problems

of the above mentioned type is the construction of numerical

programs to predict: a) nonlinear axisymmetric deformation of

ring-reinforced shells of revolution under external pressure,

and b) the stability of this displacement field with respect to
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non-axisymmetric perturbations. For deep shells with arbitrary

meridianal shape, this is indeed a difficult task.

As a beginning, and in the spirit of an exploratory

investigation, let us restrict the following discussion to the

more elementary case of an elastic shallow ring-reinforced

spherical cap. The objective of the analysis shall be to

construct a numerical scheme to predict the axisla_metric deforma-

tion of the_shell, when subjected to external pressure, and the

• stability of this axis_mmetric state with respect to

non-axisymmetric perturbations. ",
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2.2 Axisymmetric Deformation of Ring-Reinforced Spherical Caps

2.2.1 Basic Equations.

The axisymmetrical deformation of an unreinforced elastic

shallow spherical shell is governed by the following two nonlinear

differential equations [I]

" e* x 2- - + x_* = -2p + 8"_*(x8* ") x

(x¢*') _* "½• - _ - x8* = 8*2 '

• .
•

(2.1b)

where x, 8", ¢*, p are, respectively, the nondimensional radial

coordinate, rotation, stress function and load parameter as given

by N. C. Huang in [1], and ( ;'5 d( )/dx. For an unreinforced

shell, Equations (2.1) hold for the entire shell. For reinforced

shells, Equations (2.1) are valid in the region between rings,

but certain continuity and jump conditions must now be imposed

across each ring.

Consider, for example, a ring located at x = x o-

Let us assume the ring can be represented as an elastic space

curve with bending and torsinal stiffnesses. Then, the require-

merit that the slope and the horlzontal displacement of the

deformed shell be continuous across x = x yields
o

e* (x_) = e* (Xo+),

_*" cx;) - }o _*c_;) = , (_o+) - _-_o_*¢_o+) .

In addition, a consideration of the relation between the radial

4ispia ement of the r_o_ an4 the normal pressure rev0als that

(2.2a)

(2.2b)
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p__-___________.

(ro÷) uCro) (2.3)
EO e

.where N r is the radial membrane stress in the shell, u is the radial

displacement, and (AE) r is the extensional stiffness of the ring.
"J .. ii

Equation (2.3), which implies that a discontinuity in N r may exist

across a ring, was obtained by use of the second of Equations

_(4.70), Cha.pter IV ....... . " _._ ...... -
......... -..... °_. °.

. ._ Similarly, if we consider the relation between the

distributed twisting_ moment on the ring (due to ring-sheil

interact'ion) and ring twist, we obtain a further _ump condition

..... " " _r (ro +1 Mr Cro-) = (EI)r dw (ro)

- ": " = - _ ,Er '

where Mr is the radial component of bending moment, w is the

downward displacement of the shell, and (EI) r is the out-of-plane
i. • -- • ° ...... . ......

bending rigidity of the ring. Equation (2.4) was obtained by use
• -. :. : - _-.: - _ . _-

of the fourth of Equations (4.70), Chapter IV.

As expressed in terms of the dimensionless quantities

"i

of [1], Equations (2.3), (2.4) become

" <b"

where

" -_3_ _,(Xo)] ,
_*.Cxo+1 - _*(x o) = c[_* (xo) Xo

e (Xo+) - e (Xo) -__e. Cxo) ,
iMP. _ _ _ -.,., •

°

(AE) r b _ (El) r
. .

, taE _:D
• .

.... . ° ° . . ° .o °_. .-

.

4

0. - .:..:.:..,.._, .;.,..:- ...__ ................. .._. .,:_.-.
. . -- Al_p" - . . ..

; ._

•,.'- ,g -

(2.s i
._ ..... _.-

°..

(2 .Sb)

(2.6)



I/4 i/2
- 2[3(1-_2)] (_/t)

D = _t3 /12(i-_2).-

Here, H denotes the rise of the shell, and t, a, E, u are the shell

thickness, base radius, Young's modulus, end Poisson's ratio,

respectively.

Finally, in addition to Equation (2.1) which govern the

shell between rings, and the continuity and jump conditions (2.5)

across any given_ ring, we must specify boundary conditions at the

shell ba_e. Let us assume that the bladder is fixed a£ the base;

then the following boundary conditions must be satisfied at the
.... .

boundary x = I. -- " --

e* {_) = 0 , , -
: .

i

_*'(x) - _ _*(x) = 0 .

2.2.2 Solution Method.

I

For a given p, the quantities 8", _* can be determined

numerically. To begin , let us define

.... f=-2px + 8"_* , . _..:... _ .

: =__..._:..:: . . ...._ .=- (1/2) 8 *2 (2 8)
" - ...... -. -.= "- # _" -'-'-l : _.-_

and select a finite difference mesh along x with increment h. If
• .

we set •

-_.. .... x = xi:= (i-l)h _, 8i* = 8*(xi) _,

:- " ¢* (xi) ' fi = f (xi) '..... _- . " @i* :-
.- . . .

where i is an arbitrary positive integer, and if we employ

central difference formulae to approximate first and second
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derivatives with respect to x, Equations (2.1) can be written in

matrix form as

Ai Yi+l + Bi Yi + CxYi+l -- Di
, (2.10)

where

A i =

Ci =

x i 1

_'7÷-- 2h

0

01
xi 1 .

-÷ ]h2 _

x_ _ L ]
h 2 2h 0 |

x i _ i_° V

D

h2

--X.
1

Xo

1

(2.11)

.Note that Equation (2.10) holds everywhere except in the

neighborhood of a ring or the boundary. Specifically, if rings

are placed at spatial stations x = xN. (j = 1,2,...), then (2.10)

holds at all x i except XN. (j = 1,2,...) and the boundary.
]

Equations (2.2) and (2.5) imply that 8* is continuous

at xN., but ¢* and 8"" are discontinuous. We shall adopt the

]
backward three-point difference formulae to approximate the first

and second derivatives of e* and ¢* at x = XNj , and the forward

49
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three-point difference formulae to approximate the first and

second derivatives of 8", _* at x = x_j. Then, we obtain the

following matrix equations from Equations (2.1) at x = XNj and

+

x = xNj:

Ej YNj- + Fj YNj-I + Gj YNj-2 = Hj ,

+ =Lj °
Ij YNj+2 + Jj YNj+I + Kj YNj

(2.1l)

Here

i I .." fNj Nj

Hj = , L. = + '

tgNj 3 gNj

xNj + 3 - 1

h 2 2h xNj

XNj

-xN j XN__j + 3

h 2 2h

Fj = --_ + I , Gj = _h 2 I

where I is the unit matrix. The remaining, matrices Gj, Fj, Ej-

are obtained from Ij, Jj, Kj, respectively, by replacing h by -h

in the latter.
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The continuity and jump conditions (2.2) and (2.5) can

be similarly written at X=XNj as follows:

Mjy ÷ + Nj - + Pj + Qj -2 = 0Nj YNj YNj-1 YNj

RjYNj+2 + SjYNj+I + TjYNj + UjYNj + VjYNj_I+ WjYNj- 2 = 0, (2.13)

where I- _
-Mj= I, Nj =

e _

Pj

"to _ \ ,-l-c h XN

-Rj - _ ,

.. °

" -.'-i-_

I0
--- :0 .....

2h

0

Ii I2h xNj

,, 0

The matrices Qj, Wj,V j are obtained from Pj, Rj, Sj,

respectively, by replacing h by -h in the latter•

The boundary conditions (2.7) at the bladder edge x =

and i = I+l, say, can be written as

_. ...... _. G_YI+2 +..K YI+I- G Y.I = 0
.e L .........

(2.1s)
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where

I I oG= K= _
0

8 (2.16)

(Note that an extra station at x = l+h has been added for

convenience.)

The matrix Equations (2.10), (2.11), (2.13), (2.15) can

be solved by iteration. In this process we assume the column

matrices D i, Hj, Lj are known, and let

Yi = aiYi+l* 8i

where ai is a 2 X 2 matrix and _i is a column vector.

tion of (2.17) into (2.10) yields the following recurrence

relations for _i' 8i:

ai = _ (Bi + Ciai_ I)

8i = (B i + Ciai_l )-I (Di - CiBi_ I) .

(2.17)

Substitu-

(2.18)

Since Yl = 0 (i.e., slope and stress function vanish at the shell

apex for axisymmetric motion), Equation (2.17) implies that

a I = 81 =0 . (2.19)

Therefore, by use of Equations (2.18), all other ai, 8i can be

evaluated. Modifications must be imposed in the neighborhood

of a ring. For this purpose let

51
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m

YNj-I-_j-1 Y'Nj+ %Tj-I

+

yNj-_Nj YNj÷I+ _Nj .

Equations (2.11) and (2.13) furnish

-I

_Nj-I = - (Fj + Sj _Nj_2 ) Ej ,

8Nj_ 1 = (Fj + Sj a Nj_2 ) (Hj - GjSNj_2 )

_j* -[Nj + (Pj + ej _Nj 2) aNj-i ]-1 M s
.-

-I

8j* = - [Nj + (Pj + Qj eNj-2) SNj-I]

[ (Pj + Qj UNj_2) SNj- 1 + QjSNj-2]

where

al_ j = (Ij-IK.] - Rj-Ixj)-I (Rj-Isj - Ij-ljj)

8Nj = (Rj-Ixj - Ij-IKj) -I (R] 1 Yj - Ij-ILj)

-1

UNj+I = -(Sj + XjaNj) Rj ,

8Nj+l = (Sj + X jeNj) -I (Yj- XjSNj)

+ [I,] + (Vj + W aNj_2) aNj_l]Sj*Xj = T 3 j j

(2.20)

, (2.21a)

Yj =-[Uj + (Vj + WjUNj_2)UNj_i ] 8*j , (2.21b)

- (Vj + WjeNj_2) BNj_ 1 -WjSNj-2



• 7

• ,

I

Note that UNj+I and 8Nj+I can also be calculated from Equations

(2.18). However, for consistent accuracy, we prefer to employ

the last two of Equations (2.21a).

Now, by virtue of Equations (2.1"8) and (2.21a), all ui

and 8i can be evaluated. In addition, from the boundary condition,

Equation (2.15), we obtain YI+2 (a second mesh point at x = l+2h

is added 9or convenience) as • .

YI+2 = -[G+(K-GUI) _i+l ] [(K-GUI) SI+l- G_I] " (2.22)

Since all ui' 8i are known, YI+2 can be evaluated from (2.22), and

all other Yi can be computed from Equations (2.17) or (2.20).

The iteration procedure can now be described as follows:

I) iteration begins with an initial guess for Yi (i = 1,2,...),

from which D i (i # Nj)," Hi, and Lj can be calculated for j = 1,2,...

A new set of Yi can theh be evaluated by the process described

above; 2) the process is repeated until "convergence" is obtained.

A criterion for the latter can be defined by comparing the relative

error in a dimensionless average deflection, p, between two consecutive

iterations. Here p is defined by

p I__ fXx20.dx"

]
° 0

(2.23)

The value of p can be plotted as a function of p. The pressure(s)

at which axisymmetric snap-through occurs can be deduced from the

local maximums of the p vs. p curve.
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2.3 Stability of Axisymmetr_ic •State

The axisymmetric deformation of the shell is associated

with an increase in the membrane stresses N 8, Nr. If the values of

these quantities exceed certain bounds, asymmetric buckling or

bifurcation will t_ke place. In terms of the p-p curve, a branch

on the p-p curve will appear at the point of bifurcation. If the

initial slope of the branch at the point of bifurcation is negative,

snap-through is introduced due to asymmetric bifurcation; on the

other hand, if the initial slope is positive, double foldin_ or

point in _ (wrink!ing) will occur due to bifurcation. Thus, a

sufficient condition for the absence of double folding and pointing

is that no bifurcation points occur. A necessary and sufficient

condition for the absence of double folding and pointing is that

the initial slopes of all bifurcation branches be positive

" - --"_staDle*)_ _. ._ -
"_ ,; -

• °,.

2.3.1 Basic I_elations.

. °

Let _ be the dimensionless asymmetrical buckling mode

associated with bifurcation and $ the corresponding stress function.

According to [2], fo" a non-reinforced shell _ and @ are

eigenfunctions of the fgllowing eigenvalue problem:

• ¢* 8*

,*o

" . _ 0
(2.24)

z-:- " ....... I " 1 " *" 1 "" *

V + (_ + _ ) + x-_ e .
.

In general', the stability of the bifurcation branch can be

determined from the sign of the second variation of the potential

energy as expressed in terms of the pre-bifurcation deformation and the
bifurcation mode.
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Here O* _*, are solutions corresponding to the axisymmetric pre-

bifurcation deformation of the shell and ()-_ ()/88, where 8 is the

circumferential shell c_.: :dinate (Figure 2.1).If we expand w and

as follows:
o_

(x,e) = _ _n(x) cos nS,

0

_(x,O) = _ _n(x) cos ns, (2.251
-

........... n-o

Equations (2".24) reduce to - "

8.

n 2 - *" 1 '' _,
Ln 2 _n = Ln_n - (_ _n - -_/ _n ) 8 + x _n - -

X

- I,'" @*. + (XlC_ " - n_.2 _,_
x n n x2 _n )

L _n - Ln_-n _ _ _n- n2 i_n ) 8* + 1 8*= --2 x _n , (2.26)
X

where

d(dx__ xl d_ _ n2> " Ln2 (Ln() = + _ ( ) , ) = LnL n(). (2.27)

For reinforced shells,Equations (2.26) hold for the shell
•

•segments between rings. Matching across rings is accomplished with

the aid of continuity and jump conditions. The latter are obtained

by a consideration of ring forces and moments due to an asymmetric

displacement about the axisymmetric state. For this purpose,

consider Equations (4.72) of Chapter IV. These equations govern

the perturbations in ring forces and moments about the axisymmetric

state. In terms of the abridged notation:
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Pn = -fl' g = "f2' Ps = f3' mx = -ml'

t = m 2, m s = -m3, S = NI, v = N2,

F = N 3, N = -M I, M = M 2, T = M 3, U =-U I,

W = -u2 , V = U 3, _ = 821 = -812 (2,28)

Equations (4.72) can be written

= - S" f + HI* F"
Pn - r_

Ps = -F + S"---- 0

r o

q = -V + H2* _ ,

m t = -N" + v + T

o

m s = -T" - Nr_o+ HI* _

0=m - S- H 3 N .
(2.29)

From Equations (4.67) and (4.54), the axisymmetric (prebuckled)

quantities _, N, as well as the perturbations in the curvatures

H1, H2, ate given by

m m

F =-Pr ro' N = m ro o

H1 = H2* # w'"

r o

Pr =-_I ' mo =-m3 = const.
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In addition, from Equations (4.73), we obtain the following

relations-.

o

I;;u>
F = (ArE r ) _o '

- N = (ErIr°) " + _I

r o J '

T=GJ 0 +---
- .... .... r o

Combining Equations (2.29), (2.30), and (2.31) we find

=- - u (Erir i) u__
Pn _ ro / ro

+ Pr ro (Uro--_ + u_') '

v,PS =-(ArEr) v''- u" _ (Erir i) + r°-_J ,

q.m t (ErIr°) _wIV + __''_ _ ro_)
" = - + GJ " + w'"

roJ

<w )+ Pr O ° _

ro

(2.31)

(2.32)

m s -GJ + -- - (Erlr°) -w''.+ m0r O

ro / \ r o

+ Pr ro (Ip/A) _'" ,

where

Ip = IrZ + Ir°
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Let us now return to the shell bifurcation problem.

We introduce the notation N., N 8, NrS, _r, #8, Mr, MS, Mr8 as

illustrated in Figure 2.4. Before bifurcation, N r = Nr, Mr = Mr,

a.

#r = _r and N 8 = Nr8 = 8 = M8 = Mr8 = 0. After bifurcation, these

membrane stresses, transverse shears, and moments becor_e

N r = N r + nr, N 8 = n 8, Nr8 = nr0, _r = r + qr' #8 = qs, Mr = Mr

+ mr, M_ = m 8 and Mr0 = mrs. Note that, at any ring, the values

of N r, nr, nr8, qr, _, mr and mr0 are discontinuous. From

Figure 2.3 it is evident that the jumps in these quantities are

related to p, t, m t, m r , Pr and m 0 by

nr + - nr- = -Pn

nr8 - nr8 =, -Ps ,

mr 8+ - mr 8- =-mt

mr + - m r- = -m s

(2.33)

qr + - qr- = -q

Nr + - Nr- = -Pr

_+ - Mr- = -m@ .

Let _, V, W denote the horizontal radial, horizontal tangential,

and vertical components of displacement introduced by bifurcation.
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We have

U = -us V = -ve W = w (2.34)

8W=¢.

_r

In addition, let ( )" = _( )/_r and ( ) = _( )/_8 where 8 is the

polar angle of the shell. Note that d( )/ds = - (1/r O) (').

Then, Equation (2.32) can be written as

• ",-o

= ~ "" (U+V) ,+ - ArEr • Erirl(u.. V ) - l(Nr_Nr)nr - nr (V + U) +

2 ro 4r o r o

Eriri -.. -+ -- -ArErCv+ 3 + ¢U-V) ,
nr8 - nr8 2 ro4• ro

+" + 1 ms+ " -(mr + 1 mr - __ ) - (mr - + I___mr

r o r o rO

m

-l__m e )
r o

= Er_° (W_'roW")
4

r o

GrJr (W+roW) +--(Nr+-Nr-)W

to4 ro

mr+ - mr_ = _ (W_roW") + G__JJ (W+ro_")

to3 to3

.(2.35)

+ --_-- (Nr + - Nr-)W + 1 (Mr + _ Mr- ) (V+U).

Art o r o

Next, we express the derivatives of U,V in terms of the stress

function By use of the strain displacement relations, the stress-

strain relations, and the stress-stress function relations as

shown in [2], we obtain the following jump conditions, as written

in terms of the dimensionless quantities defined in [2]-
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= kl(Xo_-

;] [ ---+ 13+_,1 - Xo,W" - -c 1 - Xo¢ ) -Xo_-
X O ....

°.-

!__ -" - ¢2+_)z___- + X_7o.__-_Xow- _ J ,
_ Xo

i o-- i-k l(xo_ v_ . - T- + - - (2+v).

...." 1 _" " " .... (2.36)
l_ _ + ( +_)Xo--z - xow- -w
Xo i ,

(w- + Xow-')

. . + _ C3 *+ • ...

(w- + XoW- ) xo-_ (¢ "_*-) w-

" 1 W + W- - = -

- o . Xo_

1 (_*+ - ¢*-) w- ,
-c2 --7

x o

_" k 4.. _.. k 3 (_-_ XoW ) -
w + -w = - ---3- x°_

x C,

c I (8*+" ,-"
-l_ T -8

. ]- xo_- - w-
8

) -Xo_- + (i-,;) - (2+_) I--T- +
Xo x o

where w is the dimensionless W, which is different from the

used previously. Here ( ) -- 9__ ( ) and
_x

= 13E r Ir i XErIr O lGrJ r
k I lArEr_ , k 2 = k 3 = k 4 = ,o

c I = 4H2 c - 4EH2t and c = c 2--"_ , 2- _4 3 (2.37)
a V A_
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Note that k I = c and k 3 = b.

At each ring, W and 3W are" continuous and so are V + U

_r

and U - V. Hence, we have the following continuity conditions for

the perturbed quantities due to bifurcation

W + = W- • r

+
W = W t

(2.38)

..... at each ring. "

The boundary conditions for the clamped edge are given

in [2] ; they are"

W = 0 e

W = 0 '
oe

_e

"" v T - _ _ = 0 ,

%1

m m vl(_ v _ _ _)
X _ V

at x= I.

" - _1_ _, - 1 _,+_ _, + 2(1+,_) ( ) =o

(2.39)

If we express

w(x,_), = t _n(X)

b=l

cos nO , $(x,O) = t Yn(X)

n=l

cos n0, (2.40)

6Z
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then for each n we obtain the following jump and continuity

conditions, and boundary conditions from Equations (2.36-2.39):

• { [ ]+ "*" *" _ 1 l+(2+_)n 2 _n
(l-n 2) (,_ - 0 n) = -k 2 (l-n 2) Xo_ n + 0n- Xo

+ ---_ 13+_1 0n- + XoW n - n2Wn - -ClX O (O*+ - 0"-1 -xo0 n-

ro

nl+ i__ [l_v+(2+v)n210n" _ 3n 2 0n- - XoWn- + n 2 -

x o Xo2

-_ _ _ V • _ _n 2

(l-n2) (0n+• - 0n ) = kl(l-n2) (0n- _o 0n- -'--Xo2 0n-)

,_ _ - -.. _ - _ 3n2_____,-

_ClXo (#*+ _ _ ) [-X°0n + I__ [I__(2+.¢)n2]_ n
X 0 Xo 2_'n

-" }-Xo_ n + n 2 -' _n '

+.. _-- k3 -" k4n2
_n - _n = ---- (n2_n + Xo_ n ) + -'_ (_n + Xo_n )

Xo 3 Xo
f

+ __ n2(_*+ - _ ) _- - Cl (8*+* - 8 ) _Xo$ n + I__

x° 2 . n 2 [ x o. l

_ _ .

[l-v+(2+v)n2] _n - 3n-_2 _n- Xo_n + n2
• Xo 2

_ 2

+... _..,-. k 3 (n2_n + ) +- _0 = __ (n2-1) Xo_ n _-_ (_*+ - #*-)
n u 4 x o

x o

_ -" c I - , -
(c2_ n - c 3 _D..) + (8*+ - 8 )

x° _-_

3 n2

-----" On- _n + n2 _n 1

::0 3 _ J '

m

= _ •
n n

- ½-O n * [l-u+ (2+V) n2] Sn

x O

(2.41)

n

-. +- 2_ + _.- _ _ + .2 _ ,
O " On + XO 2 On = On " _00 x02
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--- _ 3n- +__ -"" l_ [l_v+(2+_)n2_n"
XO,n+ _ l__xo[l-u+(2+_)n2] *+n + U *n Xo*n " x O

3n2

+ _ *n ' (2.41)

%(I) = 0 ,

_n(_) = 0 ,

"" U n n2_
_n (l) -[ $ (_) + A-_- _n(l) = 0 ,

•2

lSn (l) l [i-_+(2+_)n2] _n (_) + _ _n (l) = 0 (2.42)
A 2 •

It is interesting to note that the continuity conditions and

boundary conditions are of similar form.

2.3.2 Solution Method.

Next, we shall solve this eigenvaiue problem by the finite
•

. _ = = (xi) ,difference method Accordingly, we let x = x i (i-1)h_ _i _n
* , , * _o as

_ = Sn(Xi), 8 i = 8 (xi) , %i = # (xi)' ui = _i' vi = $i and

ui

v i
I •

Equations (2.26) can be written

" _---

i+l + BiY i+CiY i-1 (2.43a)
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r--

-1 0 0 0

-1 O 0

•.l+2n2 + h 2 *_ h2 *_ h2 _)
2 (i-l) 3 2 (i-l) _i (1-% ) (I-L i -

°.

h2 ,, l+2n 2 1 '
"2-(i-1) (1-8 ) - 0 h 2 (1- _/__1)" ' i 2 (i_l) 3-

(2.43d)

Equation (.2.43) holds everywhere except in the neighborhood of rings

and the boundary. For the ring at x = xNj, Equation (2.43) is

replaced by the following equations

Q
a. A,

EjyNj + FjYNj_I + GjYNf 2 = 0 ,
÷

(2.44)
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-2 (1+2n2) h--h-.- +2 h-_-
x ¢N_

x_j Nj

2 h---(_-O ) -2-4 h---
x XNjNj "J

-2(I+2n2) h.-h__-
3

X

Nj

-2-4x_j

(2.45b)

-1

1
(l+2n 2) h

3
X

Nj

1 h (1-8)

2 x j Nj

1 h

2 x

_j
Nj

_I h (l-eN)
2 XNj j

(I+2n2)

XNj

0

l+h_k_

XNj

i+__k-
X

Nj

(2.45c)

o

6"8
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-I

Ij 1 n"_il+2n2)xN3j + 2 _Nj.

h-k- (1-e_i)
XNj

2

0

- (I+2n2)-_ -

J = XNj

,_'

h---h--(i- 0N;)
XNj

0

-1

I h (1-0 +)

XN'-_ Nj

_ I (I+2n2_ h

xNj

0

2

0

0

I- _____

XNj

h * --_-2-=-_ +. -2 _ (1-eN+..) -2+4h'-'h-
XNj Nj XNj 3 XNj

h
2 (I+2n2)-----3 -

XNj

XNj

(2.45d)

o

_2+4 bk..
X N .

%

(2.45e)

-1

Kj =

3 h 4n?-n 4 3h _*+ n 2 h 2 -*_.

(I+2n2)- ' 4 - h2+ _-_,, Nj + "---_N-2

XNj Jx_j x_j

+ (1-B +)
x 2
Nj :] Nj

o

-i

."h__ +----_
XNj . "J(l-0 .-t-)

"XNj Nj

3_ h _ 4n2-n 4 h 2" 2 (1+2n2) -

xNj4

h 2

3h (l+2n2)n 2 _ h_*+

1.... 2 " xNj Nj
xNj xNj



0

h 2

h 2 *
-h 2 + ---- 8N*.

XNj 3

(2.45f)

/

_..

The discontinuity and continuity conditions, Equations (2.41), can

be written as

SjYNj+2+TjYNj+!+UjYN3 +VjYN3 +WjYNj_I+XjYNj_ 2 = 0
(2.46)

where _ m

0

Lj ffi

-- ... ° _ .-. - _ .....

o 6 o

1_.n2
0 ------ 0 0

2h 2

0

0 O 0 0

0 _i__ 0
2h (2.47a)

Mj = 4

N. =

0

0

m

l-h2 0 0

3 (l-n 2) 0
2h

0 1 0

0 _3 0
2h

(2.47b)

(2.47c)
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. 1 /PJ ¢_'_)= k2¢1"n2)\-_--_" "ClxNJ_NJ\ 2b

Pj (1,2) = -(l-n2)+k 2(l-n 2) I-[l+(2+uln2] 2'3hxNj

-[l-u+ (2+v)n 2] _ 3

2hXNj
+ _____3n2 }.XNj 2

+ (3+u)n 2 _I -CIxNjANj

a,,

Pj (1,3) = o ,

2h • -CIXNj ANj 2h

~ 3 3_) + 9n 2 l,[l_u+(2+u)n 2]

Pj (2,2) = -(l-n2)_-_ -k l(l-n 2) _ XNj
- _ -ClXNj ANj L

3 3n2 12hXNj + 2
XNj

~

Pj (2,3) = 0 ,

Pj(2,4) = -k I(1-n2)-ClxNjANj . ,

(2.47d)

~ 1

Pj (3,1) =-------,3-
xNj

• 3XN. + C16 / 3XNj +n2>[(k3+k4)n2+(k3+n2k4+Cn2ANj)2-_]. 7k - _ ,

CLAN' I
Pj (3,2) = _ [

1-+( 2+ )n2] ,23hXNj, " 3n¢1

pj (3,3) =-i
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P. (3,4) =
3

_ 2 n2 - 3x N .

Pj(4,1) X_Nj{n2[h3(n2-1)+C2XNj ANj ] + [h3( I)-n2C3ANj]--2--_}

c16_ 3__ +

A2 2h

~ [ 3 3n 2

Pj(4,2) = _ CI_Nj [l-v+(2+v)n2] """N_j xNj31A2

3
Pj (4,3) = - _ ,

A2

Qj(I,I) = k 2(l-n 2) -CIXNjANj

2 C1 x NJ AQj (1,2) = k 2(l-n 2) [l+(2+_;)n2]h.XNj. Nj

Oj (1,3) = o ,

:3(i'4) = k2(l-n2)(" _ 0 <- 2h-_J>• -CIXNjAN.

- 32XN.

=-Cx A - " t

[l-u+ (2+U) n2]---_2

hx Nj

(2.47e)

d'B •

Qj(2,2) = (l-n 2) 2-k (l-n 2) 2'_
. 1 h_Nj -C IXNjA

,,w

Qj (2,3) = 0

Qj(2,4) = -ClXNjANj

. .

Qj (3,1) = - i
(k3+n2k4+Cn2ANj

XNj

Nj[l__+(2+_))n 2] 2
hXNj

_) + ClaN"(_)ll]

7Z



T....

oj (3,2) - _ [1-_+(2+_)n2] 2
_2

Oj (3,3)= o ,

X2

"- [ 2XN._. C,6N.

(4,1) = - l'-!---x[kS (n2-1)-n2C3A_j] k- h"_)- 'J" _ 2
Qj

Nj4 _ 12 _"

Qj (4,2) = [i-_)+(2+_)) ] hXNj 2
t

_ .

i _2Q (4,3) - _ ,

" 2

Qj (4,4) = - _

m

0

-1 0

0

0

%;

2hx Nj

[l-u+ (2+_) n2]- -----

m

0

0 0

0 0

i o -5_

2hx Nj. 2h

Tj = -4Sj

(2.47e)

(2.47f)

(2.47g)
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V. --

-3

-3

m

°

3_ +un 2

2XNjh 2
xNj

[I-9+ (2+_)n 2] 3 + 3n 2
2

xN:_.

3_ un 2

2XNjh x2j

[l_9+(2+v)n 2] 3 3n2

_j xNj

2h

m

(2.47h)

0

-1

m Q

(2.47i)

*+ ,-
where _ = _ -

can be combined as

Wj =

xj = .

8 *+ *"and 6 = - 8

(2.47j)

• Equations (.2.46)

3

PjYN- + N M_YN+ 1 = 0 ,

(2.48)
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where

Pj = Pj - QjTj Uj

..m I

Nj = Nj - QjTj IVj

• -1_jMj = _j - _j_j

• _j_j-l_jQj --_j -

pj** = _j . _j_j-l% 6

N* *
j = Nj - Mj_j IVj ,

_. _ -v _1 _

Pj = P j - RjGj Ej ,

_j = Tj - SjGj F.J

_j - _j - _j_j-_j ,

_j- _j- ;j_jKj ,

vj: vj- _.i_1_.
3 j 3"

: ~ " -1j
Tj : Tj - SjIj j

The boundary conditions, Equations (2.42) can be

written as

(2.49)

_~ _ . ~~

YYI+I + zyI - YYI-I =0 (2.50)



,#here
U

0

0

m °

I 0

0 0

l [i__+(24_)n 2]
25T

m #

(2.51a)

0 0

0

n2u

7 o

3n__22 . - 0.. - . .
: .

,_2 (2.51b)

The solution of the critical load for bifurcation can be

fo_ned by the following procedure: Let ai be a 4X4 matrix and

Yi = alYi+l (2.52)

From Equations (2.43) we obtain the following recurrence relation

between _i (i = 1,2",..'.-1-.-
_ _ .

• _ _

a i = (Bi+Ciai_l)-I A i

Since Yi = 0, we have

(2.53)

aI -- 0 (2.54)

.... _-_._-z-:--- ..... " ;-- .... " . -------,_- _..... '.-.... ,, "i........._---' " _" ...... -_--.. -• ' '_ " " " • "
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Thus from Equations (2.53) and (2.54), we can find all ui up to

the neighborhood of the first ring i = N 1 - 2. Note that

YNj-2 = UNj-2YNj-I ' YNj+I = UNj+IYNj+2

(2.55)

Let

YNj-1 = 8Nj-lYNj (2.56)

~ +

(2.57)

~ += 8+ ~
YNj Nj YNj+I

(2.58)

8 +- and are 4X4 matrices. From Equations
where 8Nj_I, 8Nj Nj

(2.44), (2.48), we have

8Nj-1 = - (Fj+GjeNj-2)

q,

- =_ +QjBNj_ l)

-I _j , (2.59)

(2.60)

(2.61)

(2.62)

For i > I_.+2, we again use the recurrence formula (2.53). There-
- j

fore, we are able to calculate all coefficient matrices _ and 8

up to the boundary of the shell. From Equations (2.50) and (2.52)

we have

S YI+I = 0 ,
(2.63)

where

* ~ (Z YUI"S = Y + - l)a (2.64)I •

??



For a nontrivial solution YI+I' we must have

det S = 0 . (2.65)

i

i

Equation (2.65) is the characteristic equation for determination

of the critical pressure for asymmetrical bifurcation.

The case n = 1 is a special case in which the differential

_quations (2.26), the discontinuity and continuity conditions,

Equations (2.4i),and the boundary conditions, Equations (2.42),can

be Satisfied for all p by an exact solution w I = o and _l = x.

Hence, for the same reason explained in [2], we have the following

equation for the case n = 1

• I

_I+l

(2.66)
[g*] UI+l - 0

v
I+l

where S is the resulting matrix obtained from S* by striking out

the second column and the fourth row. Thus, for a nontrivial

solution, we have

det S = 0 . (2.67)

Equation (2.67) is the characteristic equation for determination

of the critical pressure for asymmetrical bifurcation with n = i.

2.3.3 Numerical Procedures.

For a given geometry of a reinforced shallow clamped

shell, we wish to find the critical load for axisymmetrical

snap-through. Also, we want to know whether there is asymmetrical

bifurcation before the axisymmetrical snap-through load is reached.
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First of all, we choose a sufficiently small mesh size h

- such that the error due to the finite difference method is

insignificantly small. For convenience, we shall assume that the

positions of rin_s are arranged such that they are at the grid-

points of the mesh. Therefore, we have I = l+l/h. The position

of M rings, designated by i = N1, N2,...,N M can be determined.

Set IND = 0.

, *

In the initial trial, we set 8i and #i equal to zero.

We may evaluate Ai, B i •and C i from Equations (2.11), G and K

from Equations (2.16). For j = 1,2,..., M, we can calculate

= from Equations (2.12),
xj XNj, Ej, Fj and Gj, Ij, Jj and K

Mj, Nj, Pj, Qj, Rj, Sj, Tj, Uj, Vj and Wj from Equation (2.14).

For i = 1 and 2 and j = 1,2,..., M, we can set 8ij = _ij =0 ,

where i = 1 stands for (-) and i = 2 for (+). Also we set

Sl = 81 = p = Ps = 0.

(A) For i = 1,2,...,I+i, we may calculate fi and gi

from Equations (2.8a) and (2.8b) and D i from EquatioI_ (2.11).

For i = 1 and 2 and j = 1,2,..., M, calculate fij and gij from

Equations .(2"8)' Hj and Lj from Equation (2.12). Then for

i = 2,3,...N1-2 calculate _i and 8 i from Equation (2.18) and
e

set j = 0.

, *

(B) Set j = j+l. Find UNj-l, 8Nj-I, uj, 89 , Xj, Yj,

UNj, 8Nj, aNj+l, _Nj+l from Equations (2.21).

(i)• If j < M, for i = Nj+2, Nj+3,...Nj+I-2 , evaluate

ui and 8i by Equations (2.18) and then go to (B).

C
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(ii) If j = M, for i = N_+2, N_+3,..., I+l, calculate

si and _i from Equations (2.18) and calculate YI+2 from Equations

(2.22). For i = I+I,, I,...Nj, calculate Yi from Equation (2.17)

and set j = M-l.

(C) Calculate Y2,Nj

(2.20).

' Yl,Nj , and YNj-1 from Equation

(i) If j > i, then for i = Nj-2, Nj-3,...Nj_I+I calculate

Yi from Equation (2.17), set j = j-i and go to (C).

(ii) If j = I, for i = NI-2, Ni-3,...,l,calculate Yi

from Equation (2.17) and then calculate .p from Equation (2.23)

using Simpson's rule where 8Nj is 81,Nj.

(i) If (p-ps)/Ps is greater than a prescribed

limit of error, set Ps = p and IND = IND+I. If IND < 0 , go to

(A). Otherwise, go to end.

(2) If (p-ps)/Ps is smaller than a prescribed

limit of error, set j =0 and go to (D).
•

(D) j = j+l. .

(i) If j < M for i = 1,2...,Nj-I evaluate Ai' Bi' and

C i from Equations (2.43) , Ej, Fj, Gj, , Jj, K s , L 9, , ,

Qj, Rj, Sj, U j, j, ' XJ from Equations• (2.45-47), Pj, Nj, Mj,

Qj,* Pj**, N_* --,Qj, _j, _j, Uj, N--j,_j, V--j, T--j from Equations (2.49).

Go to (D) •

(ii) If j = M, for i = NM+I, NM+2, ..I-2, evaluate A i,

B i anO. C i from Equations (2.43), Y and Z from Equations (2.51).

Set _l = 0, for i = 2,3,..., N1-2, calculate a i from Equation (2.53)

and set j = 0.

(E) Se_ j = j+l. Find 6Nj_I from Equations (2.59),

8N . from Equations (2.60), 8N_ from Equations (2.61) and aNj+l
J t_

frora EquatiGns ,_.62, _

1
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(i) If j < M for i = Nj+2, Nj+3,..., Nj+I-2 calculate a.1

from Equation (2.53) and go to (E).

(ii) If j = M for i,= Nj+2, Nj+3,..., I+l, calculate _i

. S*from Equation (2 53), from Equation (2.64).

(i) If n = I, evaluate E* and det S*. Print p, n,

det S . Set p = p+_p. If p<_ pf (pf is an assigned value), then

go to (A), otherwise go to end.

(2) If n > i, evaluate S from Equation (2.64) and

, *

det S . Print p, n, det S . Set p = p+Ap. If p _< pf, go to (A).

Otherwise, go to end.

f
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2.4 Discussion

As was noted previously, a sufficient condition for the

elimination of double folding and pointing in bladders consisting

of rib-reinforced shells of revolution, is that no asymmetric

bifurcation points exist• A necessary and sufficient condition

(but lessconservative) for the elimination of double folding

and pointing is that all existing bifurcation branches be unstable.

It is evident, therefore, that numerical programs are necessary to

predict asymmetrical bifurcation if a rib'reinforced bladder is

to be successfully designed.

In this chapter, a finite-difference method was

developed to predict the nonlinear axisymmetrical deformation,

and asymmetrical bifurcation of shallow, ring-reinforced spherical

caps. The method employed appears to be quite tractable, in spite

of the complexity of the problem. Only minor modifications would

be necessary to include the case of a shallow, ring-reinforced

shell of revolution with arbitrary meridianal shape. Extension

of the method to deep ring-reinforced shells of revolution should

also be possible, but would certainly constitute a major analytical

effort.

For deep shells the foregoing pr6gram constitutes a first

step in the solution procedure. A segment of a deep shell of

revolution sufficiently near the apex can always be approximated

by shallow shell theory. It would appear, therefore, that one

BZ
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sensible solution procodure for bladders that are deep rib-reinforced

shells of revolution would be to couple a shallow shell (representa-

tion near vertex) to conical shell segments, the latter approximating •

the deep portion of the shell between rings. It should, of course,

be noted that the treatment of the shallow and deep portions of

the shell would be quite different. For example, in the deep

portion (under large axisymmetric deformation) the central portions

of the shell would act primarily as a membrane, bending moments

being important only in edge zones near a ring or boundary. This

is in contrast to the prebuckling (axisymmetric) deformation of

shallow shells for which the bending moments are significant over

the entire shell. In order to properly calculate the edge moments

in the deep sections, an asymptotic analysis, together with the

results of Chapter I, would be necessary.
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Figure 2.2 Forces, Moments, and Displacements
of An Element of the Ring.
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Figure 2.3 Discontinuity in Membrane
Stresses and Bending Moments.
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CHAPTER III

ANALYSIS OF A SINGLE FOLD IN AN

ELASTOMER-METAL COMPOSITE

3. I. Introduction

For a composite that consists of a thin layer of metal placed

between two layers of elastomer, and that undergoes folding, a good esti-

mate of the state of stress is obtained ifwe use the following procedures:

a) find the stress fields in the inner and outer layers of elastomer, using

large deformation theory of elasticity, and treating the thin layer of metal

as an inextensible central sheet (one may also regard the metal sheet as an

elastic layer with an equivalent elastic constant, but we shall not do this

here); b) under the bond stresses transmitted to the middle metal sheet by

the elastomer, and using a plasticity theory, find the stress and strain

fields in the metal layer. The assumption that the inner metal layer is

inextensible can be justified on the grounds that the strains in the elastomer

is by far larger than that in the metal, even when the metal undergoes

plastic deformations. (On the other hand, the fact that the central metal

sheet if_fact is not inextensible can be accounted for by using some equi-

valent elastic constants, which may be taken to depend on the state of de-

formation in the metal or may be regarded con.stant throughout the metal

layer at each state of loading.)

In the following, we shall formulate a plane-strain problem for

the a.nalysis of a single fold, using large deformation theory. In this formul-
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ation, we employ the Lagrangian (or the initial particle position) variables

as our independent variables, and integrate the basic field eqaations using

an incrementai loading and a finite-difference scheme.

._Ithough the idea of accounting for both geometrical and material

non-linearities in finite deformations by means of a step-by-step integration

is not new _i-4 ],the use of the Lagrangian coordinates in conjunction with

small deformations superimposed on finite initial deformations is new. In

fact, it app.ears that a consistent and exact formulation of this kind has not,

as yet, been developed. For example, in such a formulation one must be

careful if Cauchy's stress tensor is used, since after each loading step the

stress increment cannot be directly added to the initial stress field if they"

are not both referred to the same configuration of the body. Moreover, even

i/ the body may consist of a material which is homogeneous and isotropic in

its natural (virgin) state, at a given state of stress the same material; in

general, is nonhomogeneous and anisotropic inits response to an incremental

deformation superimposed on the initialstress-state. These and similar

facts are unfortunately not fully appreciated by most numerical analysts

in the field of structural mechanics.

A complete and correct numerical formulation of finite deformation,

including thermal and materialmemory effects, has been given by Oden in a

series of papers [5, 6]. Oden, however, casts his field equations directly

into a system 0I non-linear algebraic equations which may not readily lend

themselves to a numerical evaluation; the required iterative numerical pro-

cess may become divergent•

first used by Becker [71.

We note that a method of this kind has been
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An iucremental formulation of large deformation problems is

presented by Felippa [ 8 ] , using an Eulerian formulation in which all

the field quantities are referred to the current deformed state of the

body. The fact that the g :ometry of the body in finite deformation is

continually changing makes such a formulation ctn-nbersome. In addition

to this, Felippa's results are based on a stress-incrementwhich is

incorrect in the sense that it lacks a term linear in the displacement

gradient and proportional to the stress tensor at the given state. For
.

metallic materials with elastic moduli of the order of 30 X 106 psi , this

term can be neglected without inducing substantial errors. For non-

metallic materials, and also for metals in the plastic range, on the

other hand, this term is of the same order of magnitude or larger than

those included, and hence may not be neglected. In addition, to this,

Felippa uses the isotropic version of Hooke's Law to relate his stress-

increments to the corresponding strain-increments at a finitely deformed

state. Such a relation, in generals is incorrect.

In Section 5 of this chapter, we shall formulate a general variational

approach for an incremental loading at large deformations. We shall

employ, consistently a Lagrangian formulation, leading to results which

are exact in the framework of the considered incremental loading.

Moreover, no assumption will be made regarding the elasticity coefficients

in the stress-strain incremental relations so that our result would be

applicable to elastic materials of all kinds which may even be anisotropic

in their initial undeformed state. The numerical formulation of this

variational approach is not presented here. The method however, lends #'

itself to a consistentfinite element approximation, see Nemat-Nasser

and Shatof£ [ 9 ].
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B,2 Kinematics, Dynamics, and.Constitutive ' Relations

We choose a fixed rectangular Cartesian coordinate system with

the unit base vectors _le , e Z , and N3e , and let ,_X = X 1 el + XZ ez

+ X 3 e 3 , denote the positions of the particles X in their initial unstrained

e as the Lagrangian coordinates, and letstate. We refer to _,X " X ,,,f_

x I = x I (x I, x z)

x z = xz(Xl,X z) (z. 1)

x 3 = X 3

denote the positions of the particles in a deformed state; x = x. e. will be

referred to as the Eulerian coordinates. Here, the repeated subscripts,

and i , are to be summed for o6i = 1,2,3. We assume that (2.1) is a

smooth and invertable mapping, having the following inverse:

X 1 = Xl(X I, x z)

X z = Xz(x I, x z) (2.2)

X 3 = x 3

Hence, we assume that the /acobian

x I _ x I

is neither zero nor infinity.

x I _x 2 _ x I _x 2

_x_ _x z _k z _x i



For the sake of conciseness in the presentation, we shall use Greek

subscript letters to refer to the Lagrangian, and the Italic subscript letters

to the Eulerian variables, respectively. Since plane-strain problems are

considered, these .subscript letters will have the range I,Z. A comma

followed by a subscript letter will denote partial differentiation with respect

to the corresponding coordinate.

The so-called Green's and Finger's deformation tensors are

-- Ca_eae 8 = xi, axi,_e a e_

b = b e ej =x (xx eie j~ ij ~i i, j,a

and the Lagrangian strain tensor is given by

where _9 denotes the identity tensor. We note that the normal component
e_

of C ina direction defined by the unit vector M gives the squared stretch,

(ds/dS) z , of an element initially in that direction, where dS is the initial

and ds the current length of the element. In particular, the principal values

Z
of the symmetric tensor NC (or those of ~b) are the squared stretches A K,

K = I, II, III. We note that, since a state of plane-strain is assumed, the

e3-direction is one of the principal directions. If we 1.et this direction be

that of the third principal axis, we then have ALU = 1 . The squared

2
stretches, A K , are the roots of the equation

(2.4a)

(z.4b)

(Z. 4c)

:, f --

If M(x and CCx,_ , cx, 8 = 1,2, are components of M,_ and ~C , respectively,

then the normal component of _ in the direction M,_ is given by Cox B

M(X M_.
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3 z 2z -i" +iiz-_-i-0

where, for the considered plane-strain problem, the basic invariants

of C (or those of b ) are

-- 2 2
I = tr _ = A I + AII + 1

(2.5a)

2 2 2 2
i]'= A I All + A I +AII

m M

=HI+I- 1

2 2
= A I All

{z. Sb)

Substitution from (Z.5b) into (2.5a) now yields

3 Z 2 --z -'I +(_ + I- 1) z - III = 0 (2.5c)

which has one root equal to I . Since in (2.5b) there are only two independent

invariants, we shall denote them by

2 2I=A +All

2
H = A I A 2

For incompressible materials, we have

(2.5d)

bx I bx 2 _x I bx 2
J=,V/'_=

5X 1 bX 2 bX_ bX I
- I . (2.6a)

2 2
Now setting A I = A , we reduce (2.5d) to

, II = 1 (2.6b)
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Let us new consider conditions for the equilibrium of an element.

To this end, we denote by _ = Tij e i ej the Cauchy s' (or true) stress

tensor, and note that the traction vector on an element having a unit normal

l_ = v. e. in its deformed state is given by
,, j,_j

t i = Tji I/j
(z. 7)

where t --"t. e. is traction per unit current area of the considered

element. Now, in the absence of body forces, the equilibrium equations

are

T..

----_ = 0
_x.

• . J

For our fornaulation, it is more convenient to work with the so-

called first Pialo-Kirchhoff stress tensor, _R = T R e defined by
~ ai ~a _i '

_X
T R = J -----_ T
ai bx. ji

J

l:P

We that T_'icxis the component in the e .-direction of the tractionnote vector,

measured per unit initial area, acting on an element that initially was pe r-

pendicular to the e -direction. T R is not a symmetric tensor.{Xi

In terms of the stress tensor _R the equilibrium equations (2.8)

become
_T R.

_z
bX

-0 (z.lo)

which are expressed in terms of the Lagrangian variables.
..

Since no couple stresses will be considered,
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To formulate the constitutive equations for elastomers, we shall

ignore all thermal effects, and assume that the elastic solid is homogeneous

and isotropic, possessing a strain-energy function given by

m m

_3= _(I , n, m) ,

where I', _ , and I--_ are the basic invariants of the Green deformation

tensor C . In this case, it can readily be shown that the stress tensor

• T R is given by
lxi '

T R. _ b_,
0_ bx.

Using a Straight forward but lengthy calculation, one can show that Cauchy's

stress tensor may now be expressed as

{_z iii b____r_
TiJ - _ bI--LI 6i j +(b__ +_ bnb--_-_)_ }biJ b II bik bkj

where b.. are the components of Finger's strain tensor defined by (Z.4b).
zJ

For incompressible materials, (Z. 13) becomes .

b_ bik bkj

where p is the hydrostatic pressure to be determined as part of solution.

From (2.14) it can be seen that the principal stresses T k , K = I,II,III,

are related to the principal stretches A K , i( = I,LI,ILI, by

b_ Z bE;
T K p + 2 - Z .._-=- -'_A K -_A

51 bU

(z.ll)

(Z.lZ)

(Z.13)

(2.14)

(2. 15)

These effects can be included, but we shall not do this here, s,.'nceit

will take us beyond the scope of the present work.
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where we also have
Q

A I All All I - I

'...

.....

.-. . '

..

• ...

because of incompressibility.

Idealmaterials for which the strain-energy function, _, takes on

the form

=} a (I-3) - }B {II- 3)

IC

were considered by Moone 7 [I0] for representing the elastic behavior of

rubber-like materials. Here C_= 2 _--_ , and B = - 2 _--_ are assumed

Bl _)TI

to be constants characterizing the material. For 8 = 0 , we have the

strain-energy function of the so- called neo-Hookean materials considered

by Rivlin [ii]. This type of strain- energy functions can also be developed

using a statistical approach and a molecular theory for highly elastic

materials, as is shown by Treloa'r [12"].

a8

For incompressible plane-strain problems, (2.16) may be written

z=½_(T- 3)

where, for small deformations, /_ can be interpreted as the classical

shear modulus. In the following, we shall illustrate our results using the

strain-energy function (2. I?). However, these results can readily be

rr_odified to account for more com)licated constitutive relations that may

correspond to a given elastomer.

(2.16)

(z.x?)

/
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3.3 Formulation of Basic Preblem

f

8

3.3.1 Field Equations:
_ ,L__'

as

Using the expression (2. 17), we express

1 T R 5 x i _ _)X a .

- 7

where
i

p=R . Equilibrium equations now are

5z 5zx. - 5X X
r- R = !e____a -
1 Tai] _ bX0_bX " bXc_ _ x. " p 5x. _X

' 1 l Ot

b2X = 0 we obtainSince /b x i bXc_ ,

_2
1 R = x. -- BX 8.!a -0

[_ Tai],o_ bX abx a 5X8 b x i

Consider now a deformed (eRui/ibrium) state of the body, and

let ui = u.(X1I' X2) and q : q(X I,X2) denote, respectively, variations

in x i and p that are induced by increasing the applied loads or the im-

posed surface displacements by small amounts. We assume that the new

state of the body, defined by x. + u. and p + q , constitutes an equilibrium
1 1

state. Writing the equations of equlibrium for the new state, and using (3.2),

we obtain

b xi_ 5 2 b2 I _ _ 5 R.

• _ + X a5 X a 5X_ _X B
, i,a,S = l,z . (3.3)

Since the material is assumed to be incompressible, we have J = detlxi, ai
_x. bu.
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B u I B x2 b u2 B x I u I _ x 2 B u2 B x 1

=0

To simplify notation, let us set

X 1 = X , X z = Y , Xl =x , x2 =y

uI = u , u2 = v , V2 _= ---Bz-_X2 + _--5-Z_y2

and obtain, from (3.3) and (3.4),

v+(vZx) _-_ +(vZy) _X _X
(3.6a}

_u _v_
v+ (vZx) _-y + (vzy) _y _y (3.6b)

(3.6c)

For a given state, x and y are known functions of X and Y . Hence

all the coefficients in equations (3.6) are known functions of X andY .

These equations, therefore, are coupled linear partial differential equations

defining small changes in the particle positions and the pressure caused by a

§mall change in the boundary conditions.

Beginning with the undeformed state, we apply the first increment

of loading (or displacement) On the boundary.

cbndition, we solve the following equation_:

Corresponding to this boundary

(3.7a)

VZv =
bY
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_u _v
_-_ + _-.-_.= o (3.7c)

Denoting the solution to these equations by a superposed zero,, we write

x(l) = x + u(°)

y(1) = y + v(O)

q(1) _ 0 +p(O) ,

Using x (I) , and y(1) , we calculate _x(1)/_X , _x(l)/_Y , etc., and

substituting into (3.6), we solve for u(I) , v(I) , and q(1) that correspond

to a new incremental loading. In this manner, the field equations are

integrated step-by- step.

3.3. Z Stress Boundary Conditions: Let S 1

boundary S

We then have

of the body on which the surface tractions

T R N0_ = T. on Sai t I

denote that part of the

T. are applied.
1

(3.8a)

where N = N e is the unit normalon S

Substitution from (3. I) into (3.8a) now yields

in its undeformed state.

(,x=N ._ z p
Ti eX b X z .,

e I.

To express this equation in terms of the Lagrangian variables only, we

write

[Xa, i] = [xi, a]'l

(3.8b)



,t

Or
m, m

B X ___X 0

_. Y _-/Y o
_x _y

0 0 1
,b

T i

_Y bX

Bx _x
- _--y B---_ o

0 0 1
q

With the aid of (3.9), (3.8b) becomes

TZ :NI(I+_) + NZ .-_ B x (3. lOb)

If AT i denotes the increment in surface tractions on S 1 , we obtain

I AT 1 =N b u - _ v _ u bx/_ I " p _ + INZ(I ÷ _) + " NI + NZ _'_ q (3. lla)-- _ ,

q. . (3.1ib)

Since the final stress field must be.expressed in te£.ms of the true

(or Cauchy) stress tensor, we shall note here the following relations:

R = ___.XTI ___X TTII BY I - _X 12

TRI2 = _Y TZl " _X T22

T R _ bx T + bx

T R _ Bx T + bx
zz _Y zl _ TZZ
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Solving (3. lZ) for T... we obtain
ij

_ _x R 5x R
Tll - _..--_ TII + _'-_ TZI

TIT- = T21 _X .Tll + TZI

TZl
_ 8x R %XTR

= TIZ - b---XT IZ + _--Y 2Z

= _Y T R _y T R •T22 b X 12 + 22 "
(3.13)

.'3_3.3 Boundary Conditions at Elastomer-Metal Interface: As was

pointed out in Section 3. I, when calculating the stress field in the elastomer,

the thin middle layer of metal may be regarded inextensible. The condition

of inextensibility is that the normal component of the Lagrangian strain

tensor, taken in the direction of a unit vector tangent to the initial elastomer-

metal interface, is zero, that is

oz"

ZE S M M 8= x.1,_x.1,BM M 8- 1 = 0

x. M M_ = 1xi, a 1, _
, (3. 14a)

where M = M e is a unit vector tangent to the eiastomer-metal inter-
0t _.Cz

face in its initial undeformed state. For the _ncremental loading, (3.14a)

rqust hold in each step, leading to

ui,_xi,8 MuM_ = 0 (3.14b}

In particular, if M is taken to be parallel to the X-axis, we have M 1 = 1,

M z = 0 , reducing (3.14b) to
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bu _x + b._Xv__...l= 0
bX _X 8X bX

(3.14c)

In addition to the kinematical condition (3. 14) at the interface,

the normal tractions exerted on One face of the metal sheet by the elasto-

met must be balanced by that applied on the other face of the metal. As-

suming that the metal sheet is very thin relative to the elastomer, and

using the inextensibility condition, we get

0

IT: ]_ rT_R X_ N_ 0i x_, i Na NS t._ i ,i Sj '= '

where the superscript (+) refers to one face of the metal sheet and the

superscript (-) refers to the other face. Note that the usual sign convention

in elasticity is used, namely that normal stresses are positive in tension

and negative in compression, and that the positive shear stress po{nts

towards the positive direction of the corresponding axis when itacts on a

plane whose unit normal points toward the positive direction of a perpendi-

cular axis. Here N = N e is a unit vector normal to the interface. In
,_ (x ,,-(x

particular, if we take .,N parallel to the Y-axis, we have N 1 = 0 , N z = 1,

which yields

T _- T I = 22 b---X" T21 _'YJ '

where (3.9) is also used. For an incremental loading, (3.15b) becomes

T22 _)-"-X+ 22 b-"X- _T21 b"-_" T21

[_ R _x R _u R _x R ___1(')= TZZ b---_+ T -- - _T --- TZZ _X Zl _)Y Zl

I01

(3. ISa)

(3. ISb)

(3.15c)
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3.4 Numerical Scheme of Finite-Differencing

The system ofpartia! differential equations (3.6) will now be

written in the following form:

A I_ =d- C I_ •

is a square matrix with known elements, _ is a vector of un-

d is a known vector, and C is an operator matrix representing

where A

knowns,

the difference correction. When the appropriate boundary "conditions are

incorporated in (4.1), the solution at each step of incremental loading may

be obtained as follows:

of (4. 1) and write

I) neglect the second term in the right-hand side

(1) = A" 1 d

asZ) obtaina first correction _(1)

3) with Ij(2) = Ij{l) + _(1)

21{.l)=- A"1 c _{i)

, obtain a second correction as

_(z)___,_-z c q(z)

4) continue this process until a sufficiently accurate result is obtained.

We note thatthe above method require, s Only one matrix inversion. All
Q

correcti0ns are then obtained by means _f the matrix multiplication. We

shall now outline a way for obtaining equation (.4.1) for the considered

problem.

3.4.1 The 5-Operators: For a given fianction f, we define the so-

called 8-operators as shown in Table 3.4-1. With the mesh sizes h in

(4.2a)

{4.2b)

(4.2c)

IOZ
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TABLE 3.4-I

Definition of 6-Operator

f-3

f-2

f-1

f/.
u_

fl

f2

f3

54

1
6

f_l-f_2

I"

,'f0"f- 1

_(fl-f_1)

f2-fl

f4-f3

f_z-2f_ 3+f.4

f. l-2f_2+f_3

J
"fo- 2f l +f- 2

"fl-Zfo +f- 1 -"

"fz-Zfl+fO

fs-2fz+fl

f4" Zf3+f2

6 3

f_ i- 3f_z+f_3-f_4

./
,,fo-3f_ l+3f_z-f 3

tfi-3fo+_f"1-f.z

½(_z-zq+zf.1-f_z)

fz"3fi+_fo"f-,

"f3" 3f2+3fl-f0

f4" 3f3+3fz'fl

• 84

rfo-4f - i +6f_ 2- 4f._ 3+f4 "

f 1- 4fo+6f- 1- 4f_ z+f. 5

'f2"4fI+6f0- 4f_ 1+f- 2 --

f3" 4f2+6fl "4fo+f- 1

"f4" 4f3+6f2" 4fl +f0

_backward

--central

to 3



the X-direction, and k in the Y-direction (Fig. 3.4-1), we have

h = X(j+I}- X(j) , k = Y(i+l}- Y(i) ,

where a node (j,i) has coordinates (X(j) , Y(i)) in the reference state.

Introducing the notation

we write

2 _2
Dx ---_-_ , o x - _ D _ _ Dz --_--!2

_x z ' Y _Y ' Y _yZ

1 1 , h2 2 2 2
hD X =6 X + C X D x = 6x + C X (4.3a}

1 1
k Dy = 5y + Cy

k2 2 2 2
, Dy =.6y + Cy , (4.3b)

where the correction operators are

1 1 3 1 5 1CK=-Z 6K + 3"6 6K" "'" _''_ 6

2 _ 1 4 1 6 " 1 4
CK 12 6K +'g06K" "'" '_" ]-2 5K ° K =X,Y

Now, with IX(j) , Y(i)] --- [(j-1)h , (i-1)k]

Fig. 3.1, we have

defining the node (j, i) , see

where

Bf 1
h _ = _ [f(j+l. i) - f{j-i, i)]+ C x f(j.i)

CXI f(j,i) - lzl [f(j-_2, i) - 2f(j+l,i) + 2f(j-l,i) - f(j-2. i)]

(4.3c)

(4.3d)

(4.4a)

(4.4b)

t

_f 1 f(j _)k_ = _ [f(j.i+l) - f(j.i-l)]+ Cy .

i f(j; i}= -Cy ]-_[f(j,i+2)- 2f(j,i+l)+ 2f(j,i-l)- :[(j,i-2)]

(4.5a}

(4.5b)
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In this manner V2f = _2f/bX Z + b2f/_y2 can be expressed as

h 2 V2f = f(j-1, i) + f(j+l,i) + r2[f(j, i-I) + f(j, i+l)]

- z(l+r z) f(j, i) + cvf(j, i)
where

-_ 1
Cvfij _ [f(j-2, i) + f(j+2, i) - 4If(j- 1, i) + f(j+l, i)] + rZf(j, i-2)

h
+ rZf(j,i+Z) . 4rZ[f(j,i-l) + 4f(j,i+l) + 6(l+r z) f(j,i)] , r =_ .

3.4.2 Finite-Difference Equations: The system of partial dif-

ferential equations to be written in a finite-difference form is given by

bx bx
(3.6), where the coefficients _--_, 5-"-Y' etc., are known functions.

We define

gll = _x _x =____ = __..t5"--X ' glZ = _-"_ ' gZl _X ' g22 b Y

G I = VZx , G z = vZy

where all operators are defined explicitly in Eqs. (4.4) to (4.6). We then

obtain

vz VZv + G
gll u + g21

bu by bq=0
I _--_+ OZ _--E" bX

bu bv _q=0
glZ V2a + gz2 vzv + GI _-Y + GZ _'-_ " bY

bu by bu by _ 0
gZZ b"'_+gll b--_- gzl _"_ - glz fix

where gAB and G A , A,B = 1,2, are known functions of X and Y ,

the unknowns being u , v , and q . For an interior nodal point (j, i),

2 s j _ N , 2 _ i _ M , Eqs. {4.8) reduce to

I05

(4.6a)

(4.6b)

(4.7a)

(4.7b)

(4.8a)

(4.8b)

(4.8c)



where
tql',qz',q33(u,,, v,o} T={c}

2 h -2(l+r2) gl g +h 2r gli gll'2Gl 1 11 _G 1 r gll

2 hr .2(l+r 2 2
r g12 - TGI glz )gI2 g12 r g12 +

r g21 °g2z 0 g22 - r g21

2 h h Z
r g21 g21" 2 G2 -2(l+rZ)g21 g21 +2 G2 r g21

2 hr G2 "2(1+r2) g2 rZr g22- T g22 g22 2 g22

-r gll g12 0 "g12 r gll

m

-0 h h 0
2 Z

hr 0 0 hr
T "T

0 0 0 0

(4.9a)

hr
TGI

- rgll

(4.9b)

hr
+TGz

"(4.9c)

(4.9d)

l_= [u(j,i-1) , u(j-l,i) , u(j,i) , u(j+l,i) , u(j,i+I)]

"I_= [v(j,i-.l) , v(j-l,i) , v(j,i) , v(j+l,i) , v(j,i+X)]

• _= [q(j,i-1) , q(j-1,i) , q(j+1,i) , q(j,i+I)] ,

t ,.. 1 . . 1 . . 1

['gll Cv- Ul CX] u(J' 0 + ['g2! Cv- G2 Cx3 v(J'*)+ Cx q(j, i)

1 . . . 1 . . 1

{C} =_['gI2 CV- GI Cy] u(j,_) + ['g22 CV- u2 Cy3v(), O+ C¥ q(j,i)

I
1 1 . 1 1

kC'gzz Cx + g21 Cy] u(j,i) + [g12 CX " gll Cy]v(j,i)
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(4.9f)

(4.9hl
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where the right-hand side of (4.9a) denotes the correction term at the

interior points. From (4.9h), (4.4), (4.5) and (4.6) this correction can

be written as

{c] = c(j,i){u(j,i-2),u(j,i-1),u(j-z,i),u(j-l,i),

u(i,j) , u(j+l, i) , u(j+2, i) , u(j,i+l) ,

u(j,i+Z), v(j,£-2), v(j,i-l), v(j-2, i),

v(j-l,i) , v(i,j), v(j+1,i) , v(j+2, i) ,

v(j,i+l) , v(j,i+2), q(j,i-2), q(j,i-l),

q(j-Z,i) , q(j-l,i), q(j+l,i), q(j+l,i),

q(j, i+l) , q(j, i+2)] T
#

where C(j,i) is a 3 x Z6 correction matrix associated with an interior

point (j, i). This matrix is defined in Eq. (4. 10b). Note that in (4.10b)

there are three rows and twenty'-sb_ columns.

(4.10a)

C(j, i) --

2 G 2
I r I r
1-'2' g21 1""2g12 "T2" I-'2gll

1 r2 G1 r2

- _ gzx " "_-gxz + "-d- " "_"gxx

1 1 1 G1

± l
0 2 (l+r2) g12 "2"(l+r2} gll

i07

i
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1
" 3 gzz

1
gzl

1

1

1
glz

1
"_gll

1
]-Z gll

1
"3g12

1

2 Gr 1
l--_ glz + 1-_"

r2 G 2

" T gzz +%-

I (l+r2) g22 2

r2 G 2

-T gzz- %-

l
IZ

Z
r

-Tgll

Z
r

1-_ gll

2
r

TZ gzl

Z
r

"T gzl

1 (l+r2) gzl

Z
r

-Tgzl

z
r

]-_gzl
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{4.10b)

Note that for 3 _;j _ N-2 " and 3 _ i_ M-2 , the expression for C(j,i)

does not involve out-boundary points, which are points added outside of

the considered domain so as to improve the finite-difference representation

of derivatives at the boundaries. For Z > i and Z >j , and for i> M-2

and j > N-2 , on the other hand, the correction matrix involves out-boundary

points. We must therefore express the Quantities associated with the out-

boundary points in te.rms of their values inside of the boundary. This can be

done as follows:

a) Out-boundary points at the vicinity of the axis of symmetry: Let

j = I dcnote an axis of symmetry. Along j = 0 , we have, see Fig. 3.2,

u(0,i)--- u(Z,i)

v(0,i)--v(2,i) , (4.11)

qio,i)= q(Z,i} . ..
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b) Out-boundary points along other sides: Equations (4.9a) may

be written for points on the boundary, The additional unknowns at points

outside of the boundary are then expressed ix.terms of the corresponding

interior quantities using the finite-difference form of the given boundary

conditions.

3.4.3 Boundary Conditions: With the apparatus developed in this

section, allboundary conditions that may be of interest can easily be ex-

pressed in a finite difference form. For example, on a stress-free side

(N + 1, i) , which is initially normal to the Y-direction, we have

_v - bu _x
_-'._.£'P _x q_---_= 0

...._".

°D, ..

_Y

These equations now become

o _(N+1,i) _(N+l,i) 0 --_-_

2 2 2 2

0 0 0 -I 0 ,q

i -" 1,2 .... ,M,M+I

0 0 -gll(N+l, i)l
0 0 0

n

u(N+l, i- I)

u(N. i)

u(N+Z, i)

u(N+l, i+l)

v(N+ I, i-I)

v(N. i)

v(N+2, i)

v(N+l, i+l)

q(N+l, i)

]-I,0



For each i , there are two such boundary conditions which can be used to

obtain' u(N+2, i) and v(N÷2°i) in terms of the othcr quantities _ that are

evaluated at the node (N+l,i). Note that, if the components of the surface

tractions are prescribed to be non-zero on the considered boundary, the

right-hand side of the above equation must then be set equal to

I_ [ VTI(N+I' i)
VTz(N+I, i)

where VTI(N+I,i) and VTz(N+I,i) are the corresponding equivalent

concentrated incremental forces acting at the node (N+l,i).

Note that we have not incorporated the required correction terms here,

but they must be included after the first estimate of the unknowns at

out-boundary points is established.
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3.5 A Variat, ipnal Approach

A variational method is being now developed by the present in-

vestigators, which method can be used effectively to formulate a finite

element approximation for solution of large elastic deformation problems.

We shall give an outline of this method in what follows.

Since for each incremental loading, we are actually dealing with

a nonhomogene0us, anisotropic, linearly elastic problem, it is possible to

formulate this problem in the framework of a variational technique. To re-

tain the effectiveness of the basic approach, however, one must retain the

original Lagrangian formulation.

Consider an equilibrium (deformed) state C of the elastic solid

under surface loads T. • Let the surface loads be increased by the amount

AT i , measured per unit area in C 0, resulting in an incremental deformation

u.. The change in the strain energy is
1

5 2

_= _xi, _ 1,_ 5x. a_ u.
"_ • • *

where

R +_C += TCXi ui,_ i_j ui, cxuj, 8 "'"

_x. _xj,_, a B

R is the Piola-Kirchhoff stress tensor in Cand where T(xi

energy associated with this incremental load ng then is

The pote ntial

(5.z)

,.

IIZ
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_mdV.r (Ti+_r i)uids=r iTm. u. + _C(x iBj ui,¢_ uj,8

+... ]dV-,_s(TRiNa) u. dS- _S AT. u.dS_ _ ,

:._ _' .....

Using Gauss' theorem, and the fact the C ls in equilibrium, we reduce

(5.3) to

= _Vr J ui, cxuj, B AT u. dS17 ½ c is_ dV-_r s i •

it can be shown that if the state C is a stable equilibrium state [13 3

that is, if "_V C iSj u._,c2u.j,8 dV is positive-definite for all displacement

fields which comply with all the geometrical boundary conditions of the

problem and are sufficiently smooth, then ?r has an absolute minimum for

the actual displacement field. To develop a finite element approach for

solving plane-strain problems, one may, for example, consider a set of

piecewise linear displacement fields, and substituting into (5.4), minimize

17 to obtain a system of linear equations for the amplitudes of the displace-

ment-components at the nodal points [9]. Note that, in this formulation, all

quantities may be referred to the original undeformed state. Moreover,

Eq. (5.2) shows that (5.4) is valid for elastic materials of all kind. Note

also that C iSj cannot be identified with the usual elastic constants; they

are not constants.

For incompressible materials, (5.4) must be modified to read

0

- J'v - . x , i] uj - _ a] dv- .r aT. u. asIr [_[C(xi_J PXa,J B ui'(x '_ X(x'iui' "S _ _
, (5.s)

I

where q is the Lagrangianmultiplier, and u.. = 0 because of incom-

pressibility. With straightforward calculations, it can readily be verified
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that the first variation of (5.5) would yield the equations of equilibrium

(3.3) and the appropriate boundary conditions provided that _ is identified

with (2.17), and q is taken equal to "q/b_. "
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3.6 Estimate of Plastic fStrains in Metal Layer

The analysis presented in the preceding sections can be employed

to obtain the stress and strain fields in the e :_tomer-metal composite. In

particular, this analysis yields a conservative estimate of the shear stresses

between the metal and elastorner that must be carried by the bond bet_1een

them. Since under a repeated loading of the type encountered in expulsion

bladders, the bond between metal and elastomer may be broken, the analysis

provides information for design against such a failure.

In addition to the possible bond-failure, the metal layer may

fail during a cyclic plastic deformation. It is therefore desirable to have

a complete formulation and an analytical technique which would yield directly

not only the stress and strain fields in the elastomer la]ers, but also the

stress and strain fields in the inner metal sheet. Although attempt is being

made to develop such a program, at the present time we shall be content

with a conservative engir_eering estimate of plastic strains in the metal
• .

sheet that can be obtained directly using the known stress fields in the

alas torne r.

• Consider the free-body diagram of the elastic sheet in its unde-

formed, initial configuration, Fig. 3.'3. In a continued incremental loading,

this metal layer deforms incrementally under the action of surface tractions

transmitted to it across its interface with the elastomer. At a given state of

loading, the deformed metal sheet is in an equilibrium state under a given

set of surface loads T R. N = T. applied on its boundary, where these

tractions are conveniently referred to the initial undeformed configuration

I15
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of the metal layer, Fig. 3.3. We note that, because of the assumption

that the no,'mal tractions are continuous across the metal layer, from Eq.

(3.15b), we have

B x IR(-) _ xl R(+) R(-)] - 0 , (6.I)
TZZ -[Tzl -T21 l

where the stresses are viewed positive when they are in the positive direction

R
R , however, mayof the coordinates. The individual components T2E and T 1

TR(+)
not be continuous across the metal sheet, that is we may have -ZZ

. TZZR(-) and T R(+)zl_. TZIR(-) , where these tractions are viewed positive

if they are in the positive direction of the corresponding coordinate axis.

Since the metal layer is thin, a linear stress distribution across

its thickness appears to be a good approximation, and, therefore, from

• R and T R
the values of T2Z 21 we can calculate their values at the interior of

R
the metal sheet. We :must, however, obtain an estimate of the values of Tll

and T R which are not known on the boundary. (Note that although T1Z• lZ

= TZI ' TRIz _ TzIR because the first Piola-Kirchhofl stress tensor is not

R
symmetric.) To obtain an estimate for TII , we proceed as follows.

On a section C-C located at adistant X from X =0, there
o

act a resultant force P and a resultant moment M given, respectively, by
e

L

X R(-)) d_/+ Fp= (TR_ +) T Zl

and
L

R(-)] t
M=;X [TR_+) + TZl _ dn

(6.z)

L
mR(+)

+ ('-zz R(-) X) dT} T(L-X)- TZZ )(_" " (6.3}
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where T and F are the tangential and normal loads applied at section

A-A." Now, if we use a linear stress distribution across the metal thickness,

we obtain

R P 12MZ

TII t t 2
(6.3)

where a new coordinate system 0X, Z is used here. Hence, T RII ' TZl'R

and T_2 are known throughout the metal sheet at each state of loading.

These results can then be used to obtain an estimate for the corresponding

plastic strains as follows•

From Eqs. (3. 13), we first calculate the Cauchy stress tensor

T.. throughout the metal layer. This then defines the state of stress at a
U

given state of loading. Using an identical procedure, we calculate the in-

cremental stress-field AT.. that corresponds to an incremental loading.
U

.Then, using the Mises yield condition

£ - 3ff'2"_IT' T._.]- 0'--"0
z ij _

(6.4)

where

whe re •

and

!

Tij = Tij - ½ Tkk 5 ij ' and Cy is the yield stress in tension, we write

_2_ _ ,
_¢P = _ E'

¢_=_ [Tij T j A_ : _ [L_Tij AT j , (6.6)

d_ (6.7)
._a -

d_'P

which can be measured as the slope of the stress-plastic strain curve in

simple tension,
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CHAPTER IV

A NA LYSIS OF RIB- REINFORCEMENTS

4. I Introduction

In Chapter II, the expulsion bladder was assumed to be rein-

.forced with circumferential rings. A more generalanalysis might include

helical or other types of reinforcements, i.e., reinforcing rods whose

centerlines are tangent to a given carve on the surface of the bladder. In

any event, the differential equations governing the deformation of these

structural elements must be known in order to formulate a bladder stability

analysis. For this purpose, a geometrically nonlinear rod theory is de-

veloped in this section, a special case of which includes circular rings.

It will suffice to base this theory upon the assumptions of I) small strain,

2) symmetric cross sections, uniform along the rod length, 3) linearly elastic,

homogeneous, isotropic material, and 4) Bernoulli-Euler bending and St.

Venant free torsion.



4. Z Geometrical Preliminaries

Notation

In portions of the subsequent analysis indicial notation

[I] will be employed. Latin indicies range over 1,2,3; Greek indices

range over l,Z. The summation convention holds in each case.

Reference Curve and Directors

As a reference, let us select the locus of material points

on the cross sectional centroids of the reinforcing rod, which we assume

to be a smooth curve C in space. We define C by

r - r (S}
N

e"" " '

where r is the position vector, relative to a fixed origin, of a material

point on C , and s denotes distance along C. In the stress free un-

deformed state, we shall denote this curve by c and th,_,corresponding

position vector by

r 0 = £ 0(s0)

rrP

t

where s o represents distance along c . If the strain c of c is defined by

• Z Z

ds - ds 0 IZzc- =IdL/ds 0 - 1
ds z

, (4. Sa)

then the quantities so and s are related through

as = (I+Z(}_ ds 0 . (4.3b)



To each point ef C we now assign three mutually orthogonal

unit vectors (directors) A (s) , i = I 2 3 as follows: The vector A (s)-,,i ' ' ' 3

is the unit tangent vector to C , defined by

 3(s) = d ~r/ds

and the vectors A0_(s), C_ = 1,2, are orthogonal to ,_A3 , orthogonal to

each other, and are coincident with the principal axis of the rod cross

section.

the curve

Inn similar manner, a set of directors a. are assigned to
~1

c . The latter are defined by

aa(S 0) : dr0/ds 0

aa(s 0) = An(s) in initial state .

In view of the definitions of _Ai , a i , note that

• • - 6

where 6ij is the Kronecker delta.

Differentiation of the Directors

with respect to

It will be necessary to differentiate the directors A.
*_].

s . For this purpose itwill be instruc'tive to review a

little elementary differential geometry.

The curvature vector ._ at a point of C is defined by

dA3/ds,_ : _C_

where ._ is the curvature of C and

orthogonal to --A3 ' we can write

is a unit vector. Since /_ is
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o

where H a =_C_" ~AO . Now, since A 3 • A = 0, we have

(4.8)

A 3 .dA /ds = - A • dA /ds = - A • (_CN) = -3C,,., ,-_ _0_ --3 ,'_0_ ,.-,

and therefore

3"(dA /ds+X _3)=0

Also, it is evident that

_a" (_aIds+xa _3)--o

Equations (4. 10) and (4. 11) imply that

d_I/ds +'_l A3 = fl AZ

_z/d_ +xz _3 =fz_I

In additien, since ..AI • A z = 0 , we have

(4.9)

(4. lo)

(4.11)

(4.IZ)

AI..• 2/ds =- ..,'A2 llds

Define .

x3 =_z "_l Ids=" _1 "_z Id'

Then, Eqs. (4. 12) and (4. 14) furnish

fl = "_3 ' f2 =3C3

In summary, therefore, it has been shown that

(4. 13)

(4.14) .

(4. is)
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_z/d_ =" x3 _x "Xz _3

_3/d_ =xx _x +Xz _z (4,16)

• .;J-

i

°..

Equations (4.16) ar,_ similar to the well known Frenet-Seret

i,_rmulae [ 2 , p. 159] relating the tangent vector A 3 , the normal or

curvature vector _ , and the binomial vector of C as follows:v

eta /ds =3C_ • dp/ds =Tv-ICA

d_/ds =- T/J,

where "r is the "torsion" of C . If the angle e is introduced through

A 2 /_ = cos G , then A1 N = sin ® and the Frenet-Seret formulae

are related to the curvatures 3Ci by

_Cl =_ sin G , .'}C2 =_C cos G , _C3 = T+ dG/ds

Finally, the physical meaning of the quantities 3_ i can be

illustrated as follows: employing the right hand screw rule, let dgi

denote differential angles of rotation of the directors about the A .

respectively. Then, an elementary calculation reveals that

• _I = d82/ds ' _2 =" d_l/dS ' 3_3 = dB3/ds

axes

(4.17)

(4.18)

(4.19)

.....
• •...... -- _.-_r ....... -2..: ,...,. . __

°'.
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4.3 Displacement and Strain

Metric Tensor of Undeformed State

We represent the position vector

point of the undeformed rod by

R 0 of a material

R o(e,,ez,83) =r o(o 3) +eaa (e3) (4.20)

where 8 5 = s O , and e(x denote distance along the --,(xa axes respectively.

Employing (e I ,e z,e 3 ) as reference coordinates) the base v_ctors _*i

and the metric tensor gij = _,i " _,j of the undeformed state are

,_,_ = a R0/a eo_= a

(o) _o)9.3 =_Ro/_e3 =Jg a3 +81K3 az" eZX al

gll = gZZ = 1 ' glZ = gZl = 0

g13=g31 =-e2_:_o). 623 =%z =e_x_°_

g33=g+(elx_°))z + (ezx(3°))z

_:_o) oz_:(zo))zg= I gij ! =(1- e 1 -

The relations (4.16) were used to derive (4. Zl). Here the superscript "0"

denotes values of the curvatures in the undeformed state, i.e., they refer

to the curve c .

(4.zi)

(4.22)

Displacement Field

A basic assumption regarding the deformation of the rod

IZ7



is now introduced: the position vector R of a material point of the de-

formed rod, originally at _0

the form

in the undeformed state, is assumed in

R (8 l, Oz e3) -- r (03) + 0 _a(03) + e(O3) _(e 1, oz) _3(o3)

wher,.. _ ¢) denotes St. Venant's warping function and 0¢(03) is given by

c_(e3)= (1+zc)-½_c3 __o)

(4.23a)

(4.23b)

,?,--

The quantity" C_(O3) represents twist per unit undeformed length.

function _ satisfies

_2 ___

The

throughout the cross section G of the rod, and

b__ = 02 nl O1 n2bn

on the lateral surface (boundary of G). The quantities n in (4.24b)
a

are direction cosines of the external normal n to the lateral surface

•(n 3 = 0), i.e., net =.In,,, • 0_).

• Under (4. Z3), the displacement vector U is.

-a =u+ea(,_ -a )+a_U = R 0 _, -'-Cz 0_ 3

where

U ---- r - r

_ _0

(4.24a)

(4.24b)

(4.25a)

(4.25b)

OCX are undeformed (Lagrangian) coordinates in (4.23), they are no...__t

convected.
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is the displacement of the point of intersection of the directors A with
,_ot

the curve C , O(_(_ot- a0_) represents a displacement due to rotation of

cross sections, and (_~A 3 denotes cross sectional warping due to the

twist (x.

Equations (4.23), (4.25) represent a combination of Bernoulli-

Euler bending and St. Venant torsion. The character of this displacement

field is illustrated in Fig. 4.1.

Metric Tensor of Deformed State

.,_ . ..

_...

With reference to the undeformed coordinates (81, 82, 83),

the base vectors G. = _R/b8 i of the deformect state are, from Eqs. (4.23),

(4.4), (4. 16), (4.3b),

GOt__ A + ot _o-ot _ _3
ot

(*+z_)'_3 : (ot_1 "_c3ez)_1 + (ot_Cz +_3 el)_z

+ [I- eI_cI - ez_z + (l+Z_)'_ a'] _3

where ( )' = d( )/d83 = d{ )/ds 0 .

• The metric tensor G.. of the deformed state can be compute(}
13

from (4. Z6) through

G..=G. • G.
k) ,,,, i --,}

(4.Z6)

(4. Z7)

• Strain

t

if Green's stra"in tensor, 7i j , is employed as a measure

of deformation, we have

%
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z _ij" Gij" gij
(4. z8)

are referred to the coordinates (81, e Z, 03).where the components of Y ij

In portions of the subsequent discussion, however, the analysis can be

facili'tated by referring the components of the'strain tensor to local rect-

angular cartesian coordinates YI'Yz'Y3 a'long A1,Az,A3 respectively

(note Ya = 8a). Denoting these new components by eij , we have

b8 r _O s

eij = 7rs byX by j
(4. zg)

Now, from the geometrical relation

dR = G. d0 i=A. dY i (4.30)

we obtain

where the contravariant base vectors G i are defined in terms of the co-

variant base vectors G. by

(4.31)

/G t=G xGers t G _r s
(4.3z)

in (4.32) is the permutation symbol, and G denotes the
The quantity ers t

determinant of the metric tensor, i.e., G = } Gij _ • The transformation

(4" 31) was obtained from (4.30) by an inner product of both sides of (4.30)

with G j and noting that G i" G. = 6 i

Following considerable algebraic manipulation, the non-zero

components of the strain tensor eij can be obtained, through use of Eqs.

(4.26), (4.28), (4. Z9), (4.31), (4.32), in the following form:
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(4.33a)

- eI AscI fG- ez A_Cz ¢G-h(e I A_ I +e z A_cz)z

"where

¢G = I - e l_l " 0ZKZ

(o)

(4.33b)

In the derivation of (4.33), it was assumed that (, b(x, bA_ 3 ,

bZ(X ' , 7i j << I , where b = max (8I, 8Z); this follows from the hypothesis

• bZ(x, A5C:3that e.. << i . Consequently, terms of order ( , b(_, , b were
_.J .

neglected compared to unity in the general expressions for eij , and only

' A_:3linear terms in (X, _ , were retained.

, << 1 , then G _. 1 , an4 Eqs.If the rod is "thin, " 3.e. if b_Q

(4.33a) can be further simplified as follows:

2 el3 = (_('gET. + _5Ci - e2)

5_9 ) (4.34)
Z ez3 = (x(-_Z + q)_Z + 81

e33 c+_' 5C(0)r5° 50 ]- e A_ I-82 A_ z= o+_ _818z - -_zel 1
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Aq. 0 (x,c-Displacement Relations
1

,, f._r

To complete the geometric description of our rod, it will

be necessary to express _ 0 _, ¢ in terms of suitable components of

the displacement vector. Expressions for these quantities which are valid

for arbitrarily large displacements are very complex. We shall therefore

restrict the discussion to a small strain-moderate rotation theory. The

latter is compatible with the approximations inherent in the shallow-shell

theory employed in Chapter II.

r (O3) by

Consider ( first. Suppose we represent the position vector

£(e 3) = ro(e 3) + ui(e_)ai(e3)

Then, with use of (4.16), we obtain

,£'(e3) = a i(ul- _ uz + _c ?u3)+az(u z+_: )u I

Equations (4.36) and (4.3a) yield

CO)
• I+2c= (l+u_-:K I

I.f we define

cos (_33
(I+2c)_
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- sin BSl -- (l+ze) _

u_ +_c? ) uI +_c? ) u s

• sin 83Z - (1+2c)_ .

then (4.37) becomes simply

2 . =Icos _33 + sin2 B $I + sin2 '832

Now, the tangent vector A s to C is given by

I.

= dr/ds = (i+2_) "_ r'A
aS ~

(4.38a)

(4.38b)

(4.39}

_'_< . .

%"•...

Therefore Eqs. (4.36), (4.38) imply that

A s =- sin831 aN 1 " sin_s2 a--Z + cos_03sa S

With reference to Fig. 4.2, let us introduce the angles _0, _i '

dr'a _ "az,., ~2 _ 3
- tan_l = dr • a AN •~ ..3 s a3

A •~3 al
= , cos_0=_s" aStan_z _3 "as

These angles represent rotations of a differential element dr.

aid of (4.41), (4.37) can be rewritten as

1 + 2¢ = (l+e)Z(l+tan z $I + tan2 g)Z)

With the

(4.40)

(4.41)

(4.4Z)
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where

o- o, (4.43)

Let us now simplify (4.42) under the restriction that

1) c<<l , 2) _o2 <<1

According to the definition of _0,

cos _ = cos _33 -_(l+e) (l+2e) -_

Expanding the radical of (4.45) in a binomial series and retaining only

first order terms in ¢ , we have

(4.44)

(4.45)

. q0z¢ e _ /2 .

Therefore e differs from _ only by terms of O(_ z) and e can be

neglected compared to unity. Thus, {4.42) can be simplified under (4.44)

to

(_ e + _ tan 2 _1 + _ tan2 _2

(4.46)

(4.47)

Noting that (4.44) implies cos @33 _ 1 , (4.47) can thus be written in term_

of the displacements u. as

(4.48)

/- •

(

Consider now the curvature-displacement relations• Let

i" aj : cos _ij

cos _ij -- cos (_r/2 + 8ij) = - sin_ij ' i _j

134
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Then the directors a. 0 A. can be related by

AI "-cos _II al " sin812 a z - sinSl3 a 3

i

A 2 = - sin _21 al + cos _ZZ a2 " sin 823 _3 ' (4.50)

A 3 -- sinB31 a Ie_ - sin 8 3Z az + cos i_33 a 3

The quantities $51 R3Z _33 are given in terms of displacements u.
P p

through (4.38). The remaining unknowns in (4.50), namely 81Z ' 821 '

8 15 ' 8Z3 ' _II ' _gZ ' can be determined as a function of the four quantities

ui , i = l,Z,3 and @ig through application of the constraints: ,_AI" _I

= ,,_zA• AZ = 1 and ,,_A1 x A Z = A 3 . With use of (4.50), these furnish

2 =l °cos _Ii + sin2 B IZ + sin2 8 13

2 =ii cos _2Z ÷ sinz _21 + sinz.823

- sin831 = sinSiz sin.sz3 + sinB13 cos ._ZZ 0 (4.51)

- sinB3z = sinSzl sin 813

cos _33 = cos _ll cos _ZZ

t sin 8Z3 cos _bll

- sin .8IZ sin .821

Equations (4.51) constitute five equations for the five unknowns .821 , 813 '

Bz3'  ll'  zz"
2 Z

In addition to the assumption _0 = _35 << 1 of the preceding

paragraphs, let us assume that al._.!angles are moderately small (squares

The remaining constraint /%3 = I is already satisfied by (4.38b).
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of the angles are small compared to unity). Then, an expansion of all

trigonometric terms in (4.5,,), and a subsequent neglect of squares of

angles in comparison to unity, yields

cos _11 _ 1 , cos _ZZ _ 1 .

¢4. sz)

Thus, Eqs. (4.50) can be written

_I :al " 81z a_z +'_31 a3

AZ~ _ +821a I +a z +B3za 3 (4.53)

A~3_" 831 £1 " 83z az +£_ •

and BIZ

The curvatures _Ci can now be computed in terms of u.

from (4.53) as follows:

= . A Ix_ ¢1+zc)'½Aa ~3

which implie s

1

x3 : (l+zc)'_ hz " hi

(4.54a)

A_Z _" " _ ;K(Z0) " W l (4.54b)

wher.e

-" 83Z +X ,831



" C_2 = B31 12 " 32
(4.54c)

, .(o) .(o)
_3 = B12 + "_1 B32 " _2" B31

Equations (4.34), (4.48), (4.54) furnish a complete geometrical

description of the rod under the restriction that squares of all angles are

small compared to unity.
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4.4 Stress Resultants and Constitutive Relations

ij
Let the components of the stress tensor a be referred to the

coordinates (YI'Y2' Y3 )' Since the latter are rectangular cartesian, the

position of the indices is immaterial, and we shall simply write 0"ij . For

alinear elastic, isotropic and homogeneous material, the stress tensor is

.. bygiven in terms of the strain tensor e%1

where

l+u u 6.
eij= --_ (Tij - E akk lj

E is Young's modulus andl,, is Poisson's ratio.

(4.s5)

We now introduce an approximation: we assume that the stresses

(711 and (_ZZ can be neglected in comparison to (733

sult, the following relations are obtained:

in (4.55). As a re-

where

O33_ E e33 , 0'30(=2G e3_

G = E/Z(I+u) is the shear modulus.

Let us now define the quantities N i , M i by

(4.56)

N i = .F;_ a3ide I de Z , i = I,Z, 3

M1-S; a ez a33 de I de z

MZ ; _fi- 81 (_33 d01 d0z

(4.5v)

M3 = ,F;G (0'32 81 - _31 8Z) del dBZ
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According to (4.57), N i represent resultant forces on the rod.cross

section, and M. are first moments of the stress field.
t

Sutstitution of (4.56) into (4.57), with use of (4.34), furnishes

the following "constitutive" relations between. N 3 , Mi, V , £ , _C 8 :

N 3 --" E_ (

where

M 1 =_ EIZZ A_ z

M2 = Elll A_.I

M 3 -- GJ O_

= rod cross sectional area,

(4.58a)

_G 2 de1 de2 (no sum in C_)I_0_= .F eo(

'f(i b_ 2 2 1
b_ . ez + + ]d8 de2j = _ [ eI _ ez _ eI el ez

In the derivation of (4.58), the rod cross section was assumed to be

symmetric about both principal axes.

It should be noted that the second and third of Eqs. (4.58a) can

be written in the alternate form (see 4.54b)

M I -- EI22 w I , M 2 = EIl l co2 •

(4. 58b}
..

(4.59)

,-...,

This can be seen as follows: If the expressions for /_CCl are substituted

into Eq.(4.34) for e33 , then the resulting terms (3£(0} e_t (no sum on c_}

can be grouped with (". However, the thin rod assumption implies

that 3C{0)a 80t << 1 (no sum in _), and therefore the latter can be neglected

I_9
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compared to unity. The result is (4.59).

Finally, let us define external resultant force and moment
n

vectors f , m in terms of the traction vector T on the lateral surface

of the cable by

n n

f= _ T db. , Nm= ._b (O Aa Or× T)dbN

where b denotes the boundary of the rod cross section.

(4.60)
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4.5 Eq!fi_ibrium Equations

According to our averaging procedure, an element ds of the

cable is subjected to resultant forces and moments a_ indicated in Fig. 4.3.

We now require that these force and moment fields satisfy' equilibrium,

which yields

_N/_s +£ =0

aM/_~ s+m~+(_3xN)=0 (4.6!)

_c

If the vectors N, M, f , m are decomposed into components N. , M i,

£. , m. along the A. axes, respectively, Eqs. (4.61) become (with use
I I I

of (4.ISl)

dNl/dS - _3 N2 +_I NB + fl = 0

dN2/ds +_3 N1 +3£2 N3 + £2 = 0 (4.62a)

dN3/ds - HI NI - _2 N2 + f5 = 0

dM l/ds - _3 M2 +_1 M3 - N2 + rnl = 0 (4.62b)

dlvizlds +3£3 Ml + "_2 MS + NI + mz = 0 . ,"

Since

dM3/ds " 3£ 1 M1 " 3C2 M2 + m3 = 0

d( )/ds = (I+2¢)'_d()/dO 3

and E<< I by assumption, all derivatives with respect to

can be replaced with derivatives with respect to @B .

S in {4. 17)
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4.6 Summary of E.guations

Equations (4.62), (4.58), (4.54b), (4.48) are fourteen equations

for the fourteen unknowns: u i, N i, M i, co i, 821 , (. They are the

b_sic rod differential equations. We summarize them below:

Equilibrium

0

N 1 -_C 3 Ng +_C 1 N 3 + fl = 0

N_ +X3 N1 +_2 N3 + f2 = 0

N_ -_C 1 N 1 -_C 2 N 2 +f3 = 0

M_ -3_ 3 M 2 +_l M3 "N2 + ml " 0

I

M2 +_3 M1 +_2 M3 + N1 + mz = 0

M3° - _Cl M 1 -5C 2 M 2 +m 3 = 0

Constitutive

N 3 --EA ¢ , M 1 = EI22

MZ = EII1 _2 ' M3 = GJ _3

Strain ¢-disp1.

• 832,2 8 31,2
ul. _{o)u2)+ i--Z-_ + ("-_J

Geometric

" ¢_1 = 83Z 031 821
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r"-

, . _c(2O)_ . (o)" _ --'q31 ZI "_3 B32

, . _O) p +_c_O)B003 = _321 32 31

" 831 = u,l. _c(O) u2 + _0) us

- 832= u_+_C (°) ul+_(O) u3

(4.65a)

(4.65b)

143

,,_!"_

'' I- " =-_-"_ i[ ........... i"_ I - I.... I I



• • .

4.7 Equations for Rings

Let us now specialize the results of the preceeding sections

to rods that are circular rings in the undeformed state. Accordingly,

we must set

(4.66)

in Eqs. (4.62), (4.64), (4.65), where r 0 denotes the ring radius in the

undeformed configuration. The coordinate system selected is illustrated

in Fig.

Prebuckled Con.figuration

Consider the prebuckIed state.

independent of O3 (or s o ), and

u 5 = 0 , u 2 = constant ,

Here all quantities are

f3 =0

N 3 = constant , 8Z 1 = constant , 83 z =831 = 0

_Z = a;3 = 0 = . (o) r0' °Jl -_1 821 =821

_Z ='0 , -3Cl 1 = r 0 + u 1, _C3 = 0

( -__C_ 0) u 1 -ul/r 0

Equations (4.63) and (4.67) imply that

E A u 1 821 E Izz

N 3 = ,. r0 ' M I = r0

M 2 = M 3 = 0

144

(4.67)

(4.68)



_. .":

With use of Eqs. (4.67) and (4.68) the following additional

relations are obtained from (4.6Z):

_(1 M 1 = m 3 = constant

N 1 --- m Z = constant

N 2 --- m I - constant
(4.69)

_CI N3 = " fl = constant

fz=Nl=0

The dependent variables of the prebuckled state can therefore

be written in terms of the assumed known functions fl ' ml ' me ' m3

as follow s:

N3 =fl r0 (1 + _0 )_fl r0

N 3 r0 r_ fl

Ul - EA - EA

u 1

M 1 =- m 3 r,j (1+ -_0)_- m 3 r 0

Z
r 0 M 1 m 3 r 0

.821 E 122 E 122
, (4.70)

N I = . mz , N z --- m I , M z - M] --0

u 3 = 0 , uz = constant , ( = ul/r 0 , C_g = _3 = 0 ,
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O01 = 821/r0

The loads fl ' rn_ and the constant u2 in (4.70) are determined by

proper matching of ring and shell displacements and forces.

Perturbation Equations

The stability analysis of ChapterlI requires differential

equations describing small ring deformatious about the prebuckled con-

figuration. These can be derived by perturbing the prebuckled variables

as follows:

(ui'Ni' Mi' ¢°i' ¢' BZl) = (ui' Ni' Mi' _i' _'' "_Zl )

where (-)

+ (u_,N ,Mi,_i,c ,SZl )

denotes prebuckled state and ( )* denote perturbations.

Substitution of (4.71) into Eqs. (4.6Z), (4.63), (4.64), {4.65), with use

of (4.70), yields:

Equilibrium

N1 - _3 NZ " N3/r0 +3_1 N3 + fl = 0

NZ' *N + *'N3 Z• + _3 1 _CZ + f = 0 ,
• .

N3 +Nl/r0 "_I NI -_CZ_Z + f3 = 0

M 1 - M3/r0, - N z +m I = 0

¢

*' * M1 + --MZ +_3 _1 +m;=O

Ma * Ml/r 0-3( 1 M I + m 3 = 0

146

(4.71)

(4.72)

.................. iit.



Constitutive

N 3 = EA (u 3

u 1
+_)

r 0

M 1 = EI2Z (u 2
_21 )
r 0

M2 = Elll (Ul =
r 0

# _ t u Z

M 3 : G3 (.821 - r--_-)

This completes our formulation of the relevant differential

equations governing the reinforcing rods.

(4.73)
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